- (5) 1. Let $f(x) = \sqrt[3]{8+x}$.
 - (a) Use the Binomial Theorem to find the Maclaurin series for f. Write your answer in Σ notation.
 - (b) Find the radius of convergence for this series.
- (6) 2. Let $g(x) = \int_0^x t \cos \sqrt{t} \, dt$
 - (a) Find the Maclaurin series for g(x); express your answer in \sum form.
 - (b) Find the radius of convergence for this series.
 - (c) Find $g(\frac{1}{2})$ correct to 4 decimal places.
- (6) 3. For the function $f(x) = \sqrt{x}$:
 - (a) Find the third degree polynomial $T_3(x)$ centered at a = 1.
 - (b) Use $T_3(x)$ to approximate f(1/2).
 - (c) Use Taylor's Inequality to estimate the maximum error of your approximation.
- (8) 4. Given the curve C having parametric equations: $x = t^2 + 2t$, $y = 2t t^2$
 - (a) Find the x and y intercepts.
 - (b) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. Simplify your answers.
 - (c) Find the points on C where the tangent line is vertical or horizontal.
 - (d) Sketch the graph of \mathcal{C} for $-2 \leq t \leq 2$, showing the orientation of the curve.
 - (e) Set up, **but do not evaluate**, an integral for the area of the region bounded by C and the y-axis.
 - (f) Set up, **but do not evaluate**, an integral for the arc length of C on $-2 \le t \le 2$.
- (8) 5. Given the polar curves $r_1 = 4\cos\theta$ and $r_2 = 3\sec\theta$, do the following:
 - (a) Sketch both graphs on the same axes.
 - (b) Find all the points of intersection for $\theta \in [0, 2\pi)$. Give your answer(s) in Cartesian coordinates.
 - (c) r_1 encloses a region and r_2 cuts this region into two parts. Set up, **but do not evaluate**, an integral expression for the area of the smaller of these two parts.
 - (d) Set up, **but do not evaluate**, an integral for the length of r_1 .
- (10) 6. Let C be the space curve represented by $\mathbf{r}(t) = \langle e^t \cos t, e^t \sin t, e^t \rangle$.
 - (a) Find parametric equations for the tangent line to C at P(1,0,1).
 - (b) Find an equation (in ax + by + cz = d form) of the normal plane of \mathcal{C} at P(1,0,1).
 - (c) Find the unit tangent vector $\mathbf{T}(t)$ and the unit normal vector $\mathbf{N}(t)$.
 - (d) Find the curvature $\kappa(t)$.
 - (e) Find the tangential and normal components of the acceleration vector $(a_T \text{ and } a_N)$ as functions of t.

- (6) 7. Sketch and name the following surfaces:
 - (a) $z x^2 = 0$
 - (b) $z^2 r^2 + 4 = 0$
 - (c) $\rho = \csc \phi \cot \phi$
- (4) 8. Find the limit if it exists or show that it does not exist.
 - (a) $\lim_{(x,y)\to(0,0)} \frac{x^2\cos^2(y)}{\sqrt{x^4+3y^4}}$
 - (b) $\lim_{(x,y)\to(0,0)} \frac{x^2 \sin^2(y)}{\sqrt{x^4 + 3y^4}}$
- (4) 9. Let $f(x, y) = \sqrt{xy}$.
 - (a) Explain why f is differentiable at the point (3,1).
 - (b) Find the linearization of f at the point (3, 1).
- (3) 10. Let $z = yf(x^2 y^2)$ where f is differentiable. Show that $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = \frac{xz}{y}$.
- (3) 11. If z = f(u, v) has continuous second-order partial derivatives and u = 2x + y and v = x y, find:
 - (a) z_y in terms of z_u and z_v .
 - (b) z_{xx} in terms of z_{uu} , z_{uv} , and z_{vv} .
- (3) 12. Determine the set of points at which

$$f(x,y) = \begin{cases} \frac{2xy^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

is continuous. Justify your answer.

- (5) 13. Given the surface $S: f(x, y, z) = 4x^2 + 4y^2 + 7z^2 = 15$ and P(1, 1, 1), find:
 - (a) the directional derivative of f at the point P in the direction of $\mathbf{v} = \langle 2, 3, 6 \rangle$.
 - (b) the equation of the tangent plane at P.
 - (c) the minimum rate of change in f at P.
- (4) 14. Find and classify the critical points of $f(x,y) = x^3 + y^2 + 2xy 4x 3y + 5$.
- (4) 15. Use the method of Lagrange multipliers to find the maximum and minimum of $f(x,y) = x^2 + y^2 + 4x 4y + 3$ on the circle $x^2 + y^2 = 2$.

(9) 16. Evaluate

(a)
$$\int_0^4 \int_{x/2}^2 e^{y^2} dy dx$$

(b)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \cos(x^2 + y^2 + 4) \ dy dx$$

(c)
$$\iiint_{\mathcal{H}} \sqrt{x^2 + y^2 + z^2} \, dV \text{ where } \mathcal{H} \text{ is the region } x^2 + y^2 + z^2 \le 1, \ z \le 0.$$

- (6) 17. Let S be the solid bounded above by the hemisphere $z = \sqrt{4 x^2 y^2}$, below by the xy-plane, and laterally by the cylinder $x^2 + y^2 = 1$. Set up (**do not evaluate**) triple integrals needed to find its volume in
 - (a) cartesian coordinates
 - (b) cylindrical coordinates
 - (c) spherical coordinates
- (6) 18. Rewrite the integral $\int_0^1 \int_{2x}^2 \int_0^{4-y^2} dz dy dx$ in the order
 - (a) dxdzdy
 - (b) dydzdx

Do not evaluate. Partial credit will be awarded for clear and detailed solutions. You may wish to make two (or three) dimensional sketches.

ANSWERS

1. (a)
$$2\left(1+\frac{x}{24}+\sum_{n=2}^{\infty}\frac{(-1)^{n+1}2\cdot 5\cdots (3n-4)}{24^n n!}x^n\right)$$
 (b) 8

2. (a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+2)(2n)!} x^{n+2}$$
 (b) ∞ (c) 0.1048

3. (a)
$$1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + \frac{1}{16}(x-1)^3$$
 (b) 0.7109... (c) 0.0276...

4. (a)
$$(0,0), (0,-8), (8,0)$$
 (b) $\frac{1-t}{1+t}, \frac{-1}{(t+1)^3}$ (c) $(3,1)$ (horiz.), $(-1,-3)$ (vert.) (d)
 (e) $-\int_{-2}^{0} (t^2+2t)(2-2t) dt$ (f) $\int_{-2}^{2} \sqrt{(2t+2)^2+(2-2t)^2} dt$

5. (a) (b)
$$(3, \pm \sqrt{3})$$
 (c) $\int_0^{\pi/6} [(4\cos\theta)^2 - (3\sec\theta)^2] dt$ (d) $\int_0^{\pi} \sqrt{(-4\sin\theta)^2 + (4\cos\theta)^2} d\theta$

6. (a)
$$\mathbf{x} = \langle 1, 0, 1 \rangle + s \langle 1, 1, 1 \rangle$$
 (b) $x + y + z = 2$ (c) $\mathbf{T} = \frac{1}{\sqrt{3}} \langle \cos t - \sin t, \sin t + \cos t, 1 \rangle$
 $\mathbf{N} = \frac{1}{\sqrt{2}} \langle -\cos t - \sin t, \cos t - \sin t, 0 \rangle$ (d) $\kappa = \frac{\sqrt{2}}{3e^t}$ (e) $a_T = v' = \sqrt{3}e^t$, $a_N = \kappa v^2 = \sqrt{2}e^t$

- 7. (a) parabolic cylinder (b) hyperboloid of one sheet (c) circular paraboloid
- 8. (a) DNE (b) 0 (Squeeze)
- 9. (a) Both partials exist near (3,1) and are cts. at (3,1) (b) $L(x,y) = \frac{x-3}{2\sqrt{3}} + \frac{\sqrt{3}(y-1)}{2} + \sqrt{3}$

10.

- 11. (a) $z_u z_v$ (b) $4z_{uu} + 4z_{uv} + z_{vv}$
- 12. f is cts. everywhere (on \mathbb{R}^2).
- 13. (a) $\frac{124}{7}$ (b) 4x + 4y + 7z = 15 (c) -18
- 14. (-1/3, 11/6) (saddle), (1, 1/2) (loc. min.)
- 15. max of 13 at (1,-1), min of -3 at (-1,1)
- 16. (a) $e^4 1$ (b) $\frac{\pi}{4} (\sin 5 \sin 4)$ (c) $\frac{\pi}{2}$
- 17. (a) $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{4-x^2-y^2}} dz dy dx$ (b) $\int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{\sqrt{4-r^2}} r dz d\theta dr$ (c) $\int_{0}^{2\pi} \int_{\pi/6}^{\pi/2} \int_{0}^{\csc\phi} \rho^2 \sin\phi d\rho d\phi d\theta$
- 18. (a) $\int_0^2 \int_0^{4-y^2} \int_0^{y/2} dx dz dy$ (b) $\int_0^1 \int_0^{4-4x^2} \int_{2x}^{\sqrt{4-z}} dy dz dx$