(5) 1. Let $f(x)=\sqrt[3]{8+x}$.
(a) Use the Binomial Theorem to find the Maclaurin series for f. Write your answer in Σ notation.
(b) Find the radius of convergence for this series.
2. Let $g(x)=\int_{0}^{x} t \cos \sqrt{t} d t$
(a) Find the Maclaurin series for $g(x)$; express your answer in \sum form.
(b) Find the radius of convergence for this series.
(c) Find $g\left(\frac{1}{2}\right)$ correct to 4 decimal places.
(6) 3. For the function $f(x)=\sqrt{x}$:
(a) Find the third degree polynomial $T_{3}(x)$ centered at $a=1$.
(b) Use $T_{3}(x)$ to approximate $f(1 / 2)$.
(c) Use Taylor's Inequality to estimate the maximum error of your approximation.
4. Given the curve \mathcal{C} having parametric equations: $x=t^{2}+2 t, y=2 t-t^{2}$
(a) Find the x and y intercepts.
(b) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$. Simplify your answers.
(c) Find the points on \mathcal{C} where the tangent line is vertical or horizontal.
(d) Sketch the graph of \mathcal{C} for $-2 \leq t \leq 2$, showing the orientation of the curve.
(e) Set up, but do not evaluate, an integral for the area of the region bounded by \mathcal{C} and the y-axis.
(f) Set up, but do not evaluate, an integral for the arc length of \mathcal{C} on $-2 \leq t \leq 2$.
(8) 5. Given the polar curves $r_{1}=4 \cos \theta$ and $r_{2}=3 \sec \theta$, do the following:
(a) Sketch both graphs on the same axes.
(b) Find all the points of intersection for $\theta \in[0,2 \pi)$. Give your answer(s) in Cartesian coordinates.
(c) r_{1} encloses a region and r_{2} cuts this region into two parts. Set up, but do not evaluate, an integral expression for the area of the smaller of these two parts.
(d) Set up, but do not evaluate, an integral for the length of r_{1}.
6. Let \mathcal{C} be the space curve represented by $\mathbf{r}(t)=\left\langle e^{t} \cos t, e^{t} \sin t, e^{t}\right\rangle$.
(a) Find parametric equations for the tangent line to \mathcal{C} at $P(1,0,1)$.
(b) Find an equation (in $a x+b y+c z=d$ form) of the normal plane of \mathcal{C} at $P(1,0,1)$.
(c) Find the unit tangent vector $\mathbf{T}(t)$ and the unit normal vector $\mathbf{N}(t)$.
(d) Find the curvature $\kappa(t)$.
(e) Find the tangential and normal components of the acceleration vector (a_{T} and a_{N}) as functions of t.
(6) 7. Sketch and name the following surfaces:
(a) $z-x^{2}=0$
(b) $z^{2}-r^{2}+4=0$
(c) $\rho=\csc \phi \cot \phi$
(4) 8. Find the limit if it exists or show that it does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \cos ^{2}(y)}{\sqrt{x^{4}+3 y^{4}}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2}(y)}{\sqrt{x^{4}+3 y^{4}}}$
(4) 9. Let $f(x, y)=\sqrt{x y}$.
(a) Explain why f is differentiable at the point $(3,1)$.
(b) Find the linearization of f at the point $(3,1)$.
(3) 10. Let $z=y f\left(x^{2}-y^{2}\right)$ where f is differentiable. Show that $y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}=\frac{x z}{y}$.
(3) 11. If $z=f(u, v)$ has continuous second-order partial derivatives and $u=2 x+y$ and $v=x-y$, find:
(a) z_{y} in terms of z_{u} and z_{v}.
(b) $z_{x x}$ in terms of $z_{u u}, z_{u v}$, and $z_{v v}$.
(3) 12. Determine the set of points at which

$$
f(x, y)= \begin{cases}\frac{2 x y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

is continuous. Justify your answer.
(5) 13. Given the surface $\mathcal{S}: f(x, y, z)=4 x^{2}+4 y^{2}+7 z^{2}=15$ and $P(1,1,1)$, find:
(a) the directional derivative of f at the point P in the direction of $\mathbf{v}=\langle 2,3,6\rangle$.
(b) the equation of the tangent plane at P.
(c) the minimum rate of change in f at P.
(4) 14. Find and classify the critical points of $f(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$.
(4) 15. Use the method of Lagrange multipliers to find the maximum and minimum of $f(x, y)=x^{2}+y^{2}+4 x-4 y+3$ on the circle $x^{2}+y^{2}=2$.
(9) 16. Evaluate
(a) $\int_{0}^{4} \int_{x / 2}^{2} e^{y^{2}} d y d x$
(b) $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \cos \left(x^{2}+y^{2}+4\right) d y d x$
(c) $\iiint_{\mathcal{H}} \sqrt{x^{2}+y^{2}+z^{2}} d V$ where \mathcal{H} is the region $x^{2}+y^{2}+z^{2} \leq 1, z \leq 0$.
(6) 17. Let S be the solid bounded above by the hemisphere $z=\sqrt{4-x^{2}-y^{2}}$, below by the $x y$-plane, and laterally by the cylinder $x^{2}+y^{2}=1$. Set up (do not evaluate) triple integrals needed to find its volume in
(a) cartesian coordinates
(b) cylindrical coordinates
(c) spherical coordinates
(6) 18. Rewrite the integral $\int_{0}^{1} \int_{2 x}^{2} \int_{0}^{4-y^{2}} d z d y d x$ in the order
(a) $d x d z d y$
(b) $d y d z d x$

Do not evaluate. Partial credit will be awarded for clear and detailed solutions. You may wish to make two (or three) dimensional sketches.

ANSWERS

1. (a) $2\left(1+\frac{x}{24}+\sum_{n=2}^{\infty} \frac{(-1)^{n+1} 2 \cdot 5 \cdots(3 n-4)}{24^{n} n!} x^{n}\right)$ (b) 8
2. (a) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+2)(2 n)!} x^{n+2}$ (b) ∞ (c) 0.1048
3. (a) $1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\frac{1}{16}(x-1)^{3}$ (b) 0.7109... (c) 0.0276...
4. (a) $(0,0),(0,-8),(8,0)$ (b) $\frac{1-t}{1+t}, \frac{-1}{(t+1)^{3}}(\mathrm{c})(3,1)$ (horiz.), $(-1,-3)$ (vert.) (d)
(e) $-\int_{-2}^{0}\left(t^{2}+2 t\right)(2-2 t) d t$ (f) $\int_{-2}^{2} \sqrt{(2 t+2)^{2}+(2-2 t)^{2}} d t$
5. (a) (b) $(3, \pm \sqrt{3})$ (c) $\int_{0}^{\pi / 6}\left[(4 \cos \theta)^{2}-(3 \sec \theta)^{2}\right] d t$ (d) $\int_{0}^{\pi} \sqrt{(-4 \sin \theta)^{2}+(4 \cos \theta)^{2}} d \theta$
6. (a) $\mathbf{x}=\langle 1,0,1\rangle+s\langle 1,1,1\rangle$ (b) $x+y+z=2$ (c) $\mathbf{T}=\frac{1}{\sqrt{3}}\langle\cos t-\sin t, \sin t+\cos t, 1\rangle$ $\mathbf{N}=\frac{1}{\sqrt{2}}\langle-\cos t-\sin t, \cos t-\sin t, 0\rangle$ (d) $\kappa=\frac{\sqrt{2}}{3 e^{t}}$ (e) $a_{T}=v^{\prime}=\sqrt{3} e^{t}, a_{N}=\kappa v^{2}=\sqrt{2} e^{t}$
7. (a) parabolic cylinder (b) hyperboloid of one sheet (c) circular paraboloid
8. (a) DNE (b) 0 (Squeeze)
9. (a) Both partials exist near $(3,1)$ and are cts. at $(3,1)$ (b) $L(x, y)=\frac{x-3}{2 \sqrt{3}}+\frac{\sqrt{3}(y-1)}{2}+\sqrt{3}$
10.
11. (a) $z_{u}-z_{v}$ (b) $4 z_{u u}+4 z_{u v}+z_{v v}$
12. f is cts. everywhere (on \mathbb{R}^{2}).
13. (a) $\frac{124}{7}$
(b) $4 x+4 y+7 z=15$
(c) -18
14. $(-1 / 3,11 / 6)$ (saddle), $(1,1 / 2)$ (loc. min.)
15. max of 13 at $(1,-1)$, min of -3 at $(-1,1)$
16. (a) $e^{4}-1$
(b) $\frac{\pi}{4}(\sin 5-\sin 4)$
(c) $\frac{\pi}{2}$
17. (a) $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} d z d y d x$
(b) $\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\sqrt{4-r^{2}}} r d z d \theta d r$
(c) $\int_{0}^{2 \pi} \int_{\pi / 6}^{\pi / 2} \int_{0}^{\mathrm{csc} \phi} \rho^{2} \sin \phi d \rho d \phi d \theta$
18. (a) $\int_{0}^{2} \int_{0}^{4-y^{2}} \int_{0}^{y / 2} d x d z d y$
(b) $\int_{0}^{1} \int_{0}^{4-4 x^{2}} \int_{2 x}^{\sqrt{4-z}} d y d z d x$
