Please Note: This was a 2 hour exam, which did not test course content from Chapters 10 and 11 of the textbook (Stewart Calculus Early Transcendentals 8th edition).

1. Identify and sketch each of the following:
(a) $x^{2}+y^{2}+z^{2}=2 y$
(b) The level surface of $w=f(x, y, z)=\frac{x^{2}}{9}-y^{2}-z^{2}$ for $w=1$.
(c) $\rho=4 \csc (\phi) \cot (\phi)$
2. A curve is defined by $\mathbf{r}(t)=\langle 2 \cos (t), 2 \sin (t), t\rangle$.
(a) Find the velocity and acceleration vectors: $\mathbf{v}(t)$ and $\mathbf{a}(t)$.
(b) Find the unit tangent and unit normal vectors at $t=0$.
(c) Find the curvature κ at $t=0$.
3. Is the following function continuous at the origin? Be sure to properly justify your answer.

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{5 x^{2} y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

4. Given the implicit relation $x^{2} y z=\frac{x \sin (z)}{y^{2}}+1$, find $\frac{\partial z}{\partial x}$.
5. Given $f(x, y)=x^{2} \ln \left(\frac{y}{x^{2}}\right)$, find:
(a) $\frac{\partial^{2} f}{\partial x \partial y}$,
(b) $\frac{\partial z}{\partial r}$, where $z=f(x, y), x=r^{2}+s^{2}$, and $y=2 r s$.
6. If $f(u, v, w)$ is a differentiable function and $F=f(x-y, y-z, z-x)$, show that $\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}+\frac{\partial F}{\partial z}=0$.
7. Given the level surface \mathcal{S} : $f(x, y, z)=x-y^{3}-z^{2}=3$ and the point $P(-4,-2,1)$,
(a) find the equation of the tangent plane to \mathcal{S} at the point P,
(b) find the directional derivative of f at P in the direction of $v=\langle 3,6,-2\rangle$,
(c) find the maximum rate of change in f at P,
(d) show that $\mathbf{r}(t)=\left\langle 2 t^{5}+t^{4}-7, t^{2}-t-2, t\right\rangle$ is tangent to the surface \mathcal{S} at P.
8. Find and classify the critical points of $f(x, y)=x^{3}+3 x y^{2}+3 y^{2}-15 x+2$.
9. Evaluate $\iint_{D} x \mathrm{~d} A$, where D is the region bounded by the line $y=x+1$ and the parabola $y=\frac{1}{2}\left(x^{2}-6\right)$.
10. Evaluate the following integrals, changing the order of integration or coordinate system as needed.
(a) $\int_{0}^{9} \int_{\sqrt{x}}^{3} x y \sin \left(y^{6}\right) \mathrm{d} y \mathrm{~d} x$
(b) $\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} e^{x^{2}+y^{2}} \mathrm{~d} x \mathrm{~d} y$
11. Rewrite the integral $\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} x \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x$ in the order $\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$.
12. Sketch the solid region \mathcal{S} between the cone $z=\sqrt{x^{2}+y^{2}}$ and the $x y$ plane, inside the cylinder $x^{2}+y^{2}=1$.
(a) Set up the triple integral necessary to find the volume of \mathcal{S} :
(i) using cylindrical coordinates
(ii) using spherical coordinates
(b) Evaluate one of these integrals to determine the volume of \mathcal{S}.

Answers

1. (a) Sphere of radius 1 , centered at $(0,1,0)$

(b) Hyperboloid in two sheets, intersecting the x axis at $(\pm 3,0,0)$

(a) $\mathbf{v}(t)=\langle-2 \sin (t), 2 \cos (t), t\rangle, \quad \mathbf{a}(t)=\langle-2 \cos (t),-2 \sin (t), 0\rangle$
(b) $\mathbf{T}(t)=\frac{1}{\sqrt{5}}\langle 0,2,1\rangle, \quad \mathbf{N}(t)=\langle-1,0,0\rangle$
(c) $\frac{2}{5}$
2.

Notice that:

$$
\begin{aligned}
& 0 \leq x^{2} \leq x^{2}+y^{2} \\
& 0 \leq \frac{x^{2}}{x^{2}+y^{2}} \leq 1 \\
& 0 \leq \frac{5 x^{2}|y|}{x^{2}+y^{2}} \leq 5|y|
\end{aligned}
$$

take the limit in question:

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} 0 & \leq \lim _{(x, y) \rightarrow(0,0)} \frac{5 x^{2}|y|}{x^{2}+y^{2}} \leq \lim _{(x, y) \rightarrow(0,0)} 5|y| \\
0 & \leq \lim _{(x, y) \rightarrow(0,0)} \frac{5 x^{2}|y|}{x^{2}+y^{2}} \leq 0 \\
0 & \leq \lim _{(x, y) \rightarrow(0,0)}\left|\frac{5 x^{2} y}{x^{2}+y^{2}}\right| \leq 0
\end{aligned}
$$

Therefore $\lim _{(x, y) \rightarrow(0,0)}\left|\frac{5 x^{2} y}{x^{2}+y^{2}}\right|=\left|\lim _{(x, y) \rightarrow(0,0)} \frac{5 x^{2} y}{x^{2}+y^{2}}\right|=0$, so $\lim _{(x, y) \rightarrow(0,0)} \frac{5 x^{2} y}{x^{2}+y^{2}}=0$.
3. $-\frac{F_{x}}{F_{z}}=\frac{\sin (z)-2 x y^{3} z}{x^{2} y^{3}-x \cos (z)}$
4. (a) $\frac{2 x}{y}$
(b) $4 x r\left(\ln \left(\frac{y}{x^{2}}\right)-1\right)+\frac{2 x^{2} s}{y}$
5. Using the chain rule,

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}+\frac{\partial F}{\partial z}=\left(\frac{\partial F}{\partial u}-\frac{\partial F}{\partial w}\right)+\left(-\frac{\partial F}{\partial u}+\frac{\partial F}{\partial v}\right)+\left(-\frac{\partial F}{\partial v}+\frac{\partial F}{\partial w}\right)=0
$$

6. (a) $x-12 y-2 z=18$
(b) $\frac{-65}{7}$
(c) $\sqrt{149}$
(d) Note that $(-4,-2,1)=\mathbf{r}(1)$, and show that $r^{\prime}(1) \circ \nabla f(-4,-2,1)=0$.
7. Local minimum at $(\sqrt{5}, 0)$, local maximum at $(-\sqrt{5}, 0)$, saddle points at $(1, \pm 2)$.
8. $\frac{176}{3}$
9. $\frac{1-\cos (729)}{12}$
10. $\frac{\pi}{8}\left(e^{4}-1\right)$
11. $\int_{0}^{1} \int_{0}^{1-z} \int_{-\sqrt{y}}^{\sqrt{y}} x \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$
12. The region to be sketched is shown in blue:

(a) (i) $\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{r} r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta$
(ii) $\int_{0}^{2 \pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\csc (\phi)} \rho^{2} \sin (\phi) \mathrm{d} \rho \mathrm{d} \phi \mathrm{d} \theta$
(b) $\frac{2 \pi}{3}$ units 3
