7. Identify and sketch the following. Show all your work.
(a) The surface $z^{2}=r^{2}$.
(b) The surface $\rho=4 \cos \varphi$.
(c) The graph of the function $z=\sqrt{4-x^{2}+y^{2}}$.
8. For the function $f(x)=x \ln (x)$:
(a) find the $4^{\text {th }}$ degree Taylor polynomial $T_{4}(x)$ around $x=1$. approximate $f(x)$ on the interval $[0.5,1.5]$.
9. Let $g(x)=\int_{0}^{x} \frac{t^{2} d t}{1+t^{4}}$
(a) Find the Maclaurin series for $g(x)$, and its radius of convergence;
(b) approximate $\int_{0}^{1 / 2} \frac{t^{2} d t}{1+t^{4}}$ within an error of $\pm 10^{-4}$ (and justify your answer).
(c) Find $g^{(7)}(0)$.
10. Sketch (on the same axes) the graphs of $r=3 \sin \theta$ and $r=1+\sin \theta$.
(a) Find all points of intersection.
(b) Set up (but do not evaluate) the integrals needed to find
ii. the perimeter (length) of $r=1+\sin \theta$. $t=1$, and satisfies $\frac{d x}{d t}=\frac{2}{t}$ and $\frac{d y}{d t}=1-\frac{1}{t^{2}}$.
(a) Find the parametric equations for \mathcal{C} (i.e. for x and y).
(b) Find the Cartesian equation for \mathcal{C} by eliminating the parameter t.
(c) Find the length of \mathcal{C} from $t=1$ to $t=3$.
11. A space curve \mathcal{C} is defined by the vector equation $\boldsymbol{r}(t)=\left\langle t^{3}, 3 t^{2}, 6 t\right\rangle$.
(a) Compute the velocity \boldsymbol{v}, acceleration \boldsymbol{a}, and speed v of a point moving along \mathcal{C}. and the unit normal vector N.

Simplify your answers.

8. (a) Calculate $f_{x y}(x, y)$ for the function $f(x, y)=x \mathrm{e}^{x^{2}-y^{2}}$.
(b) Use Taylor's Inequality (or Lagrange's Remainder) to estimate the error in using $T_{4}(x)$ to
9. Find the Maclaurin series for the function $f(x)=\frac{1}{\sqrt{1+x^{3}}}$. What is its radius of convergence?
i. the area of the region common to both (i.e. inside) $r=3 \sin \theta$ and $r=1+\sin \theta$, and
10. Suppose that a plane curve \mathcal{C} given by parametric equations in t passes through the point $(0,2)$ at
(b) Find the tangential and normal components of acceleration a_{T}, a_{N}, the unit tangent vector \boldsymbol{T}
(b) Let $z=f(x-y, y-x)$. Show that $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$
(c) Given $z=f(x, y)$ is implicitly defined by the equation $z=\mathrm{e}^{x} \sin (y+z)$, find $\frac{\partial z}{\partial x}$.

(Marks)

(8) 9. Let \mathcal{S} be the level surface $f(x, y, z)=x-y^{3}-2 z^{2}=2$, and $P_{0}(-4,-2,1)$ a point on \mathcal{S}. Find:
(a) the equation of the tangent plane to \mathcal{S} at P_{0};
(b) the derivative of f at P_{0} in the direction $\boldsymbol{v}=\langle 3,6,-2\rangle$;
(c) the direction and value of the maximal rate of increase of f at P_{0};
(d) the parametric equations of the tangent line at P_{0} to the curve of intersection of \mathcal{S} and the plane $2 x-3 y-z=-3$.
(4) 10. Given $z=f(x, y)=\ln (2 y-x)$:
(a) find the total differential $d z$;
(b) use $d z$ to find an approximate value of $f(3.1,1.98)$.
(5) 11. Find and classify all local extrema of $f(x, y)=4 x y-x^{4}-y^{4}$.
(6) 12. Use Lagrange Multipliers to determine the dimensions of a rectangular box with no top, having a volume of 32 cubic meters and requiring the least amount of material for construction.
(12) 13. Evaluate (change the coordinates or the order of integration as appropriate):
(a) $\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} \mathrm{e}^{x^{4}} d x d y$
(b) $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$
(c) $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x$.
(6) 14. Sketch the solid region \mathcal{S} above the $x y$ plane and inside both the hemisphere $z=\sqrt{25-x^{2}-y^{2}}$ and the cylinder $x^{2}+y^{2}=9$.
Set up (but do not evaluate) triple integrals representing the volume of \mathcal{S} in
(a) cartesian coordinates
(b) cylindrical coordinates
(c) spherical coordinates

