(Marks)

(6)

1. Let $f(x)=\int_{0}^{x} t \cos \sqrt{t} d t$:
(a) find a power series representation for $f(x)$;
(b) use this series to approximate $f(x)=\int_{0}^{1 / 2} t \cos \sqrt{t} d t$ correctly to 4 decimal places.
(6)
2. Find the power series representation for each of the following functions, and state the radius of convergence.
(a) $f(x)=\frac{1}{4-3 x}$, centered at $x=2$.
(b) $f(x)=\frac{3}{2+x-x^{2}}$, centered at $x=0$.
(8)
3. Let $f(x)=\sqrt[3]{8+x}$:
(a) use the Binomial theorem to find the first 5 terms of the Maclaurin series for $f(x)$, and its radius of convergence;
(b) approximate $\sqrt[3]{8.2}$ correctly to 4 decimal places.
(8)
(6)
4. (a) Sketch the graph of $r=2 \sin (3 \theta)$.
(b) Find the area of the region enclosed by the curve.
(c) Set up (but do not evaluate) the integral needed to find the length of one loop of the curve.
5. Let \mathcal{C} be the space curve defined by the vector equation $\boldsymbol{r}(t)=\left\langle\mathrm{e}^{t}, \mathrm{e}^{t} \sin t, \mathrm{e}^{t} \cos t\right\rangle$.
(a) Find the equation of a quadric surface on which \mathcal{C} lies. Sketch both the surface and the curve.
(b) Find the unit tangent vector \boldsymbol{T} and the unit normal vector \boldsymbol{N}.
(c) Find the length of \mathcal{C} on the interval $0 \leq t \leq 1$.
(d) Find the curvature κ of \mathcal{C}.
(e) Find the parametric equations of the tangent line to \mathcal{C} at the point where $t=0$.
(9) 7. Sketch and describe the following. Show all your work.
(a) The surface $f(x, y)=\sqrt{x^{2}+2 y^{2}+1}$.
(b) The level curve of $z=\frac{y}{x^{2}+y^{2}}$ corresponding to $z=\frac{1}{4}$.
(c) The surface $\rho=\csc \varphi \cot \varphi$.

(Marks)

(2)
8. Let \boldsymbol{r} be a three-times-differentiable function of t. Simplify: $\left[\boldsymbol{r} \cdot\left(\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right)\right]^{\prime}$.
(4) $\quad 9$. Find the limit (or if appropriate, show that it does not exist):
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{\sqrt{x^{2}+y^{2}}}$
(b) $\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)$
(3) 10. Show that if $f(t)$ is differentiable, then $z=f(x / y)$ is a solution of the partial differentiable equation $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=0$.
(3) 11. Let \mathcal{C} be the curve formed by the intersection of the level surface $x^{2} y+y z+z^{2}+1=0$ and the plane $x+y+z=1$. Let $P_{0}(1,-1,1)$ be a point on \mathcal{C}. Find a tangent vector to \mathcal{C} at P_{0}.
(6) 12. Let $z=f(x, y)$ be implicitly defined by $\sin (x y)+x z^{4}+y^{3} z=2$, and let $P_{0}(0,1,2)$ be a point on this surface.
(a) Find the equation of the tangent plane to the surface at P_{0}.
(b) Find $\nabla f(0,1)$.
(c) Find an approximation of $f(-0.05,1.10)$.
(5) 13. Find and classify the critical points of $f(x, y)=y^{2}+x^{2} y+x^{2}-2 y$.
(5) 14. Use Lagrange Multipliers to find the points on the sphere $x^{2}+y^{2}+z^{2}=3$ where the maximum and minimum values of the product $x y z$ are found.
(8) 15. Evaluate:
(a) $\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \ln \left(x^{2}+y^{2}+1\right) d x d y$
(b) $\int_{0}^{4} \int_{0}^{1} \int_{2 y}^{2} \frac{\cos \left(x^{2}\right)}{\sqrt{z}} d x d y d z$
(5) 16. Sketch the solid region \mathcal{S} bounded below by $z=\sqrt{x^{2}+y^{2}}$, and bounded above by $\rho=2 \cos \phi$. Find the volume of \mathcal{S}.
(6) 17. Sketch the solid region \mathcal{S} bounded below by the plane $z=0$, laterally by the surface $x^{2}+(y-1)^{2}=1$, and above by the surface $z=x^{2}+y^{2}$.
Set up the triple integrals representing the volume of \mathcal{S} in
(a) cartesian coordinates
(b) cylindrical coordinates

1. (a) $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+2}}{(n+2)(2 n)!}$
(b) $f\left(\frac{1}{2}\right) \simeq \frac{1}{8}-\frac{1}{48}+\frac{1}{1536} \simeq 0.1048$
2. (a) $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 3^{n}(x-2)^{n}}{2^{n+1}}$, and $R=\frac{2}{3}$
(b) $f(x)=\sum_{n=0}^{\infty}\left(\frac{1}{2^{n+1}}+(-1)^{n}\right) x^{n}$, and $R=1$
3. (a) $f(x)=2+\frac{x}{12}-\frac{x^{2}}{288}+\frac{5 x^{3}}{20736}-\frac{5 x^{4}}{248832}+\cdots$ and $R=8$
(b) $f(0.2)=2+\frac{0.2}{12}-\frac{(0.2)^{2}}{288} \simeq 2.0165$
with absolute value of error less than $\frac{5(0.2)^{3}}{20736}=0.19 \times 10^{-5}$
4. (a) Counterclockwise orientation
(b) $\frac{d y}{d x}=\frac{2 t}{1-t^{2}}$ and $\frac{d^{2} y}{d x^{2}}=\frac{2\left(1+t^{2}\right)}{3\left(1-t^{2}\right)^{3}}$
(c) Vertical tangents at $(\pm 2,3)$
(d) $A=2 \int_{0}^{\sqrt{3}} x d y=2 \int_{0}^{\sqrt{3}}\left(3 t-t^{3}\right)(6 t) d t=12 \int_{0}^{\sqrt{3}}\left(3 t^{2}-t^{4}\right) d t$
5. (a)

(b) $A=\int_{0}^{\pi} \frac{1}{2}(2 \sin (3 \theta))^{2} d \theta=\pi$
(c) $\mathcal{L}=\int_{0}^{\pi / 3} \sqrt{4+32 \cos ^{2}(3 \theta)} d \theta=2 \int_{0}^{\pi / 3} \sqrt{1+8 \cos ^{2}(3 \theta)} d \theta$
6. (a) The curve lies on the cone $x^{2}=y^{2}+z^{2}$. Note that $x=e^{t}$ so $x>0$ implying that the curve spirals around $x=\sqrt{y^{2}+z^{2}}$, the upper nappe of the cone.
(b) $\mathbf{T}(t)=\frac{1}{\sqrt{3}}\langle 1, \sin t+\cos t, \cos t-\sin t\rangle$
and $\mathbf{N}(t)=\frac{1}{\sqrt{2}}\langle 0, \cos t-\sin t,-\sin t-\cos t\rangle$
(c) $\mathcal{L}=\sqrt{3}(e-1)$
(d) $\kappa=\frac{\sqrt{2}}{3 e^{t}}$
(e) $x=1+t, y=t, z=1+t$ where $t \in \mathbb{R}$
7. (a) $-x^{2}-2 y^{2}+z^{2}=1$ and $z>0$, hyperboloid of two sheets (top part only)
(b) $x^{2}+(y-2)^{2}=4$, circle of radius 2 and center $(0,2)$
(c) $z=r^{2}$ or $z=x^{2}+y^{2}$, circular paraboloid
8.

$$
\begin{aligned}
{\left[\mathbf{r} \cdot\left(\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right)\right]^{\prime} } & =\mathbf{r}^{\prime} \cdot\left(\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right)+\mathbf{r} \cdot\left(\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right)^{\prime} \\
& =0+\mathbf{r} \cdot\left(\mathbf{r}^{\prime \prime} \times \mathbf{r}^{\prime \prime}+\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime \prime}\right) \\
& =\mathbf{r} \cdot\left(\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime \prime}\right)
\end{aligned}
$$

9. (a) The limit does not exist
(b) Use polar coordinates to show the limit is zero
10. Show that $\frac{\partial z}{\partial x}=\frac{d f}{d t}\left(\frac{1}{y}\right)$ and $\frac{\partial z}{\partial y}=\frac{d f}{d t}\left(\frac{-x}{y^{2}}\right)$.
11. Let $F(x, y, z)=x^{2} y+y z+z^{2}+1$ and $\mathbf{n}=\langle 1,1,1\rangle$. Then $\mathbf{n} \times \nabla F\left(P_{0}\right)$ gives $\mathbf{v}=\langle-1,-3,4\rangle$
12. (a) $17 x+6 y+z=8$
(b) $\nabla f(0,1)=\langle-17,-6\rangle$
(c) $f(-0.05,1.1) \simeq f(0,1)+\left.d f\right|_{(0,1)}=2.25$
13. There is a local minimum at $(0,1)(f(0,1)=-1)$. The points $(\pm 2,-1)$ are saddle points.
14. The minimum value is -1 occurring at $(-1,-1,-1),(-1,1,1),(1,-1,1)$ and $(1,1,-1)$.

The maximum value is 1 occurring at $(-1,-1,1),(-1,1,-1),(1,-1,-1)$ and $(1,1,1)$.
15. (a) $I=\int_{0}^{2 \pi} \int_{0}^{1} \ln \left(r^{2}+1\right) r d r d \theta=\pi(2 \ln 2-1)$
(b) $I=\int_{0}^{4} \int_{0}^{2} \int_{0}^{\frac{x}{2}} \frac{\cos \left(x^{2}\right)}{\sqrt{z}} d y d x d z=\sin 4$
16. $V=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta=\pi$
17. (a) $V=\int_{0}^{2} \int_{-\sqrt{2 y-y^{2}}}^{\sqrt{2 y-y^{2}}} \int_{0}^{x^{2}+y^{2}} d z d x d y$
(b) $V=\int_{0}^{\pi} \int_{0}^{2 \sin \theta} \int_{0}^{r^{2}} r d z d r d \theta$

