(9) 1. Name and sketch the following surfaces:
(a) $x^{2}=4\left(y-z^{2}\right)$
(b) $r^{2}=z^{2}+4$
(c) $\rho \tan \phi(\cos \theta+\sin \theta)=2 \sec \phi-\rho$
(8) 2. The motion of an object is given by $\mathbf{r}(t)=\left\langle\ln t^{2}, \sqrt{8} t, t^{2}\right\rangle$ for $t>0$.
(a) Find parametric equations of the tangent line to the trajectory at time $t=1$.
(b) Find an expression for the speed v of the object in terms of t.
(c) Find the curvature κ of the trajectory at time $t=1$.
(d) Find the tangential and normal components of acceleration at time $t=1$.
(4) 3. Find the limit if it exists or show that it does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{(-9 x+y)^{2}}{81 x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}+5 y^{2}}{\sqrt{3 x^{2}+5 y^{2}+1}-1}$
(4) 4. Consider $z=f(x, y)=\sqrt{x^{2}+y^{2}}$.
(a) Find the differential $d z$.
(b) Use $d z$ to find an approximation for $f(3.06,3.92)$.
(7) 5. Consider the surface $F(x, y, z)=x z+2 x^{2} y+y^{2} z^{3}=11$ and the point $P(2,1,1)$.
(a) Find the directional derivative of F at P in the direction of $\mathbf{v}=\langle-1,1,1\rangle$.
(b) Find the maximum rate of increase of F at P ?
(c) In what direction (unit vector) does F increase the fastest at P ?
(d) Find the equation (in $a x+b y+c z=d$ form) of the tangent plane to the surface at P.
(e) Assume that $Q \neq P$ is a point on this tangent plane. What is the directional derivative of F at P in the direction $\overrightarrow{P Q}$?
(f) Find $\frac{\partial z}{\partial y}$.
(3) 6. Assume f is a differentiable function and $z=y f\left(x^{2}-y^{2}\right)$. Show that $y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}=\frac{x z}{y}$
(5) 7. Find and classify the critical points of $f(x, y)=x^{4}+2 y^{2}-4 x y$.
(5) 8. Use the method of Lagrange multipliers to find the point on the sphere $x^{2}+y^{2}+z^{2}=4$ that is farthest from the point $P(1,-1,1)$.
(12) 9. Evaluate the integrals.
(a) $\int_{0}^{8} \int_{\sqrt[3]{x}}^{2} \sin \left(y^{4}\right) d y d x$
(b) $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \cos \left(x^{2}+y^{2}+4\right) d y d x$
(c) $\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d x d y$.
(6) 10. Set up, but do not evaluate, triple integrals to find the volume of the region between the sphere $x^{2}+y^{2}+z^{2}=19$ and the upper sheet of the hyperboloid $z^{2}-x^{2}-y^{2}=1, z>0$ in
(a) Cartesian coordinates
(b) cylindrical coordinates
(4) 11. Using a suitable change of variables, find the following double integral over T where T is the triangle enclosed by the lines $y-x=0, y+x=2$ and the x-axis.

$$
\iint_{T}(x+y)^{3} d x d y
$$

(2) 12. Let $f(x)=\sum_{n=1}^{\infty} \frac{n(x+6)^{3 n}}{(3 n+1)!}$; evaluate $f^{(27)}(-6)$.
(5) 13. Find the Maclaurin series for the following functions and state the radius of convergence.
(a) $f(x)=\frac{x^{3}}{5+x^{2}}$
(b) $g(x)=\frac{\arctan \left(3 x^{2}\right)}{x}$
(5) 14. Approximate $\int_{0}^{0.1} x e^{-x^{3}} d x$ to six decimal places of accuracy.
(7) 15. Let $f(x)=\frac{1}{\sqrt{x}}$
(a) Use the binomial series to expand $f(x)$ as a power series centered at $x=9$ and state the radius of convergence.
(b) If $T_{2}(x)$ is used to approximate $f(9.5)$, give an upper bound on the error using the Lagrange form of the remainder.
(8) 16. Consider the curve \mathcal{C} having parametric equations: $\left\{\begin{array}{l}x=2 \cos t+1 \\ y=3 \sin t\end{array}\right.$ where $t \in \mathbb{R}$.
(a) Find $d y / d x$ and $d^{2} y / d x^{2}$.
(b) Find all the points on \mathcal{C} where the tangent line is vertical or horizontal.
(c) Eliminate the parameter t to express the curve in the form $f(x, y)=d$. Using this equation, identify and sketch \mathcal{C}.
(d) Set up, but do not evaluate, an integral expression that gives the area bounded by the curve.
(6) 17. Consider the polar curves $r=\cos (3 \theta)$ and $r=\frac{1}{2}$.
(a) Sketch the two curves on the same axes.
(b) Set up, but do not evaluate, an integral expression for the area of the region common to both curves.
(c) Set up, but do not evaluate, the integral needed to find the length of $r=\cos (3 \theta)$.

