DDC Final Exam May 12th, 2017

- 1. [2] Write $z = -2\sqrt{3} + 2i$ in polar form.
- 2. [2] Find the real and imaginary parts of $\frac{1-2i}{3+4i}$.
- 3. [2] Find all complex solutions to $z^3 = -8$.
- 4. **[6]** In \mathbb{P}_2 :
 - (a) Find the change-of-coordinates matrix from the basis $\mathcal{B} = \{1 + t^2, 1 t, -t + t^2\}$ to the standard basis $\mathcal{C} = \{1, t, t^2\}$.
 - (b) Given that $[p]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, find $[p]_{\mathcal{C}}$ and p.
 - (c) Given $q = 1 + 2t + 3t^2$, how would you use matrix multiplication to find $[q]_{\mathcal{B}}$? Just briefly explain what you would do without actually doing it.
- 5. **[5]** Find the eigenvalues of $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.
- 6. [5] Let $A = \begin{bmatrix} 3 & -5 \\ 1 & -1 \end{bmatrix}$. Construct the general solution of $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$ involving complex eigenfunctions.
- 7. [5] Find the least-squares line y = ax + b for the data points (0,1), (1,3), (2,2), (3,3).
- 8. **[6]** Let $A = \begin{bmatrix} 2 & -2 & 18 \\ 2 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}$.
 - (a) Find an orthonormal basis for Col(A).
 - (b) Find a QR factorization of A.
- 9. [7] Consider \mathbb{P}_2 together with the inner product (p,q) = p(0)q(0) + p(1)q(1) + p(2)q(2).
 - (a) Compute ||3 2t||.
 - (b) Find the **orthogonal** projection of t^2 onto the subspace spanned by 1 and t.
- 10. [6] Find the second order Fourier approximation to the function

$$f(x) = \begin{cases} 0 & 0 \le x < \pi \\ 1 & \pi \le x \le 2\pi \end{cases}$$

on the interval $[0, 2\pi]$.

- 11. [7] Consider the quadratic form on \mathbb{R}^2 : $Q(\mathbf{x}) = 16x_1^2 - 8x_1x_2 + x_2^2.$
 - (a) Find a symmetric matrix A so that $Q(x) = x^T A x$.
 - (b) Make a change of variable x = Py, P orthogonal, that transforms Q into a quadratic form with no cross-product term. Clearly state P and the new quadratic form.
 - (c) Classify Q.

- 12. **[5]** Find the singular values of $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- 13. [5] A singular value decomposition of A is $A = U\Sigma V^T$ where

$$U = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix},$$

$$V^{T} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{18} & -2/3\\ 1/\sqrt{2} & 1/\sqrt{18} & 2/3\\ 0 & -4/\sqrt{18} & 1/3 \end{bmatrix}^{T}$$

- (a) Find a **reduced** singular value decomposition of A.
- (b) Find a **reduced** singular value **expansion** of A.
- 14. [5] Find the minimum polynomial of the given matrix.

(a)
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
(c) $A = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \end{bmatrix}$

15. [6] In this question H_1 , H_2 , and H_3 are subspaces of \mathbb{R}^3 . Show that the sum is direct, or explain why it is not.

(a)
$$H_1 + H_2 + H_3$$
 where $H_1 = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$,

$$H_2 = \operatorname{Span} \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}, \quad H_3 = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

(b)
$$H_1 + H_2 + H_3$$
 where $H_1 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 0 \right\}$

$$H_2 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x - y - z = 0 \right\}, \quad H_3 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

16. [6] Find the Jordan canonical form of

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}. \quad \text{Hint: } m_A(\lambda) = \lambda^2(\lambda - 2).$$

- 17. [2] Let $z \in \mathbb{C}$. If |z| = Re(z) prove that:
 - (a) $z \in \mathbb{R}$; (b) z > 0.

18. [3] The matrix $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 1 & 1 \end{bmatrix}$ is the change of basis matrix from what basis \mathcal{B} to the basis

$$C = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\} \quad \text{for } \mathbb{R}^3?$$

- 19. [4] Let $A = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$. Use diagonalization to find a formula for A^k where k is a positive integer.
- 20. [2] Let A be $n \times n$ and let λ_1 and λ_2 be distinct eigenvalues of A. Show that the intersection of the corresponding eigenspaces is $\{0\}$.
- 21. [3] For which value(s) of $a \in \mathbb{R}$ is the matrix $A = \begin{bmatrix} 1 & 3 & a \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ diagonalizable?
- 22. [3] Let u and v be vectors in an inner product space, and let $H = \operatorname{Span}\{u,v\}$. Show that $w \in H^{\perp}$ if and only if $\langle w,u \rangle = \langle w,v \rangle = 0$.
- 23. [3] Assume that A is a square matrix with minimum polynomial $m_A(\lambda) = \lambda(\lambda 2)(\lambda + 3)$.
 - (a) Explain why $A^2 + A 6I \neq 0$.
 - (b) Express A^3 as a linear combination of A^2 and A.

ANSWERS

1.
$$z = 4e^{5\pi i/6}$$

2.
$$-\frac{1}{5}, -\frac{2}{5}$$

3.
$$z = 2e^{i\phi}, \ \phi = \pi/3, \pi, 5\pi/3$$

4. (a)
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$$

(b)
$$[p]_{\mathcal{C}} = \begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix}, p = 2 - 2t + 2t^2$$

- (c) Calculate $P^{-1}\begin{bmatrix}1\\2\\3\end{bmatrix}$ where P is the matrix found in (a).
- 5. $\lambda = 0, 1$

6.
$$\mathbf{x} = c_1 e^{(1+i)t} \begin{bmatrix} 2+i \\ 1 \end{bmatrix} + c_2 e^{(1-i)t} \begin{bmatrix} 2-i \\ 1 \end{bmatrix}$$

7.
$$y = \frac{1}{2}x + \frac{3}{2}$$

8. (a)
$$\left\{ \begin{bmatrix} 2/3\\2/3\\1/3 \end{bmatrix}, \begin{bmatrix} -2/3\\1/3\\2/3 \end{bmatrix}, \begin{bmatrix} 1/3\\-2/3\\2/3 \end{bmatrix} \right\}$$

(b)
$$\begin{bmatrix} 2/3 & -2/3 & 1/3 \\ 2/3 & 1/3 & -2/3 \\ 1/3 & 2/3 & 2/3 \end{bmatrix} \begin{bmatrix} 3 & 0 & 12 \\ 0 & 3 & -12 \\ 0 & 0 & 6 \end{bmatrix}$$

- 9. (a) $\sqrt{11}$
 - (b) $\frac{5}{3} + 2(t-1)$
- 10. $\frac{1}{2} \frac{2}{\pi} \sin x$
- 11. (a) $\begin{bmatrix} 16 & -4 \\ -4 & 1 \end{bmatrix}$

(b)
$$P = \frac{1}{\sqrt{17}} \begin{bmatrix} -4 & 1\\ 1 & 4 \end{bmatrix}, Q' = 17y_1^2$$

- (c) Positive semi-definite
- 12. $\sigma = \sqrt{3}, 1$

13. (a)
$$\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{18} \\ 1/\sqrt{2} & 1/\sqrt{18} \\ 0 & -4/\sqrt{18} \end{bmatrix}^T$$

(b)
$$5 \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix} + 3 \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{18} & 1/\sqrt{18} & -4/\sqrt{18} \end{bmatrix}$$

- 14. (a) $(\lambda 2)^2$
 - (b) λ
 - (c) $\lambda 3$
- 15. (a) Sum is direct. One should check that all the appropriate intersections are trivial.

(b) Not direct:
$$\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \in H_1 \cap H_2$$

16.
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \\ -1/2 & 1/2 & 0 \end{bmatrix}$$

17. (a)
$$|z| = Re(z) \Rightarrow \sqrt{a^2 + b^2} = a \Rightarrow b = 0 \Rightarrow z = a \in \mathbb{R}$$

(b)
$$z = a = \sqrt{a^2 + b^2} \ge 0$$

18.
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 4\\3\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\0 \end{bmatrix} \right\}$$

$$19. \begin{bmatrix} 2^k & 0 \\ 3^k - 2^k & 3^k \end{bmatrix}$$

20.
$$Ax = \lambda_1 x$$
 and $Ax = \lambda_2 x \Rightarrow \lambda_1 x = \lambda_2 x \Rightarrow (\lambda_1 - \lambda_2) x = \mathbf{0} \Rightarrow x = \mathbf{0} \text{ (since } \lambda_1 \neq \lambda_2)$

21.
$$a = -6$$

22. (
$$\Rightarrow$$
): $w \in H^{\perp} \Rightarrow \langle w, x \rangle = 0 \ \forall x \in H \Rightarrow \langle w, u \rangle = \langle w, v \rangle = 0$ (\Leftarrow): $\langle w, u \rangle = \langle w, v \rangle = 0 \Rightarrow \forall a, b \in \mathbb{R}$ we have $\langle w, au + bv \rangle = a \langle w, u \rangle + b \langle w, v \rangle = 0 + 0 = 0 \Rightarrow w \in H^{\perp}$

23. (a) The minimum polynomial of A is of degree 3, so no polynomial p of degree 2 can satisfy p(A) = 0.

(b)
$$m_A(A) = 0 \Rightarrow A(A - 2I)(A + 3I) = 0 \Rightarrow A^3 + A^2 - 6A = 0 \Rightarrow A^3 = -A^2 + 6A$$