DDC Final Exam
 May 12th, 2017

1. [2] Write $z=-2 \sqrt{3}+2 i$ in polar form.
2. [2] Find the real and imaginary parts of $\frac{1-2 i}{3+4 i}$.
3. [2] Find all complex solutions to $z^{3}=-8$.
4. [6] $\operatorname{In} \mathbb{P}_{2}$:
(a) Find the change-of-coordinates matrix from the basis $\mathcal{B}=\left\{1+t^{2}, 1-t,-t+t^{2}\right\}$ to the standard basis $\mathcal{C}=\left\{1, t, t^{2}\right\}$.
(b) Given that $[p]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, find $[p]_{\mathcal{C}}$ and p.
(c) Given $q=1+2 t+3 t^{2}$, how would you use matrix multiplication to find $[q]_{\mathcal{B}}$? Just briefly explain what you would do without actually doing it.
5. [5] Find the eigenvalues of $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right]$.
6. [5] Let $A=\left[\begin{array}{ll}3 & -5 \\ 1 & -1\end{array}\right]$. Construct the general solution of $\frac{d \mathbf{x}}{d t}=A \mathbf{x}$ involving complex eigenfunctions.
7. [5] Find the least-squares line $y=a x+b$ for the data points $(0,1),(1,3),(2,2),(3,3)$.
8. [6] Let $A=\left[\begin{array}{ccc}2 & -2 & 18 \\ 2 & 1 & 0 \\ 1 & 2 & 0\end{array}\right]$.
(a) Find an orthonormal basis for $\operatorname{Col}(A)$.
(b) Find a QR factorization of A.
9. [7] Consider \mathbb{P}_{2} together with the inner product $(p, q)=p(0) q(0)+p(1) q(1)+p(2) q(2)$.
(a) Compute $\|3-2 t\|$.
(b) Find the orthogonal projection of t^{2} onto the subspace spanned by 1 and t.
10. [6] Find the second order Fourier approximation to the function

$$
f(x)= \begin{cases}0 & 0 \leq x<\pi \\ 1 & \pi \leq x \leq 2 \pi\end{cases}
$$

on the interval $[0,2 \pi]$.
11. [7] Consider the quadratic form on \mathbb{R}^{2} :

$$
Q(\mathbf{x})=16 x_{1}^{2}-8 x_{1} x_{2}+x_{2}^{2} .
$$

(a) Find a symmetric matrix A so that $Q(x)=x^{T} A x$.
(b) Make a change of variable $x=P y, P$ orthogonal, that transforms Q into a quadratic form with no cross-product term. Clearly state P and the new quadratic form.
(c) Classify Q.
12. [5] Find the singular values of $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$.
13. [5] A singular value decomposition of A is $A=U \Sigma V^{T}$ where

$$
\begin{gathered}
U=\left[\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right], \quad \Sigma=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0
\end{array}\right], \\
V^{T}=\left[\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{18} & -2 / 3 \\
1 / \sqrt{2} & 1 / \sqrt{18} & 2 / 3 \\
0 & -4 / \sqrt{18} & 1 / 3
\end{array}\right]^{T}
\end{gathered}
$$

(a) Find a reduced singular value decomposition of A.
(b) Find a reduced singular value expansion of A.
14. [5] Find the minimum polynomial of the given matrix.
(a) $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
(b) $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
(c) $A=\left[\begin{array}{lllllll}3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3\end{array}\right]$
15. [6] In this question H_{1}, H_{2}, and H_{3} are subspaces of \mathbb{R}^{3}. Show that the sum is direct, or explain why it is not.
(a) $H_{1}+H_{2}+H_{3}$ where $H_{1}=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$,

$$
H_{2}=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}, \quad H_{3}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} .
$$

(b) $H_{1}+H_{2}+H_{3}$ where $H_{1}=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x+y+z=0\right\}$

$$
H_{2}=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: x-y-z=0\right\}, \quad H_{3}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\} .
$$

16. [6] Find the Jordan canonical form of

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] . \quad \text { Hint: } m_{A}(\lambda)=\lambda^{2}(\lambda-2) .
$$

17. [2] Let $z \in \mathbb{C}$. If $|z|=\operatorname{Re}(z)$ prove that:
(a) $z \in \mathbb{R}$;
(b) $z \geq 0$.
18. [3] The matrix $P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 1 & 1\end{array}\right]$ is the change of basis matrix from what basis \mathcal{B} to the basis

$$
\mathcal{C}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} \quad \text { for } \mathbb{R}^{3} ?
$$

19. [4] Let $A=\left[\begin{array}{ll}2 & 0 \\ 1 & 3\end{array}\right]$. Use diagonalization to find a formula for A^{k} where k is a positive integer.
20. [2] Let A be $n \times n$ and let λ_{1} and λ_{2} be distinct eigenvalues of A. Show that the intersection of the corresponding eigenspaces is $\{\mathbf{0}\}$.
21. [3] For which value(s) of $a \in \mathbb{R}$ is the matrix $A=$ $\left[\begin{array}{lll}1 & 3 & a \\ 0 & 0 & 2 \\ 0 & 0 & 1\end{array}\right]$ diagonalizable?
22. [3] Let u and v be vectors in an inner product space, and let $H=\operatorname{Span}\{u, v\}$. Show that $w \in H^{\perp}$ if and only if $\langle w, u\rangle=\langle w, v\rangle=0$.
23. [3] Assume that A is a square matrix with minimum polynomial $m_{A}(\lambda)=\lambda(\lambda-2)(\lambda+3)$.
(a) Explain why $A^{2}+A-6 I \neq 0$.
(b) Express A^{3} as a linear combination of A^{2} and A.

ANSWERS

1. $z=4 e^{5 \pi i / 6}$
2. $-\frac{1}{5},-\frac{2}{5}$
3. $z=2 e^{i \phi}, \phi=\pi / 3, \pi, 5 \pi / 3$
4. (a) $\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & -1 & -1 \\ 1 & 0 & 1\end{array}\right]$
(b) $[p]_{\mathcal{C}}=\left[\begin{array}{c}2 \\ -2 \\ 2\end{array}\right], p=2-2 t+2 t^{2}$
(c) Calculate $P^{-1}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ where P is the matrix found in (a).
5. $\lambda=0,1$
6. $\mathbf{x}=c_{1} e^{(1+i) t}\left[\begin{array}{c}2+i \\ 1\end{array}\right]+c_{2} e^{(1-i) t}\left[\begin{array}{c}2-i \\ 1\end{array}\right]$
7. $y=\frac{1}{2} x+\frac{3}{2}$
8. (a) $\left\{\left[\begin{array}{l}2 / 3 \\ 2 / 3 \\ 1 / 3\end{array}\right],\left[\begin{array}{c}-2 / 3 \\ 1 / 3 \\ 2 / 3\end{array}\right],\left[\begin{array}{c}1 / 3 \\ -2 / 3 \\ 2 / 3\end{array}\right]\right\}$
(b) $\left[\begin{array}{ccc}2 / 3 & -2 / 3 & 1 / 3 \\ 2 / 3 & 1 / 3 & -2 / 3 \\ 1 / 3 & 2 / 3 & 2 / 3\end{array}\right]\left[\begin{array}{ccc}3 & 0 & 12 \\ 0 & 3 & -12 \\ 0 & 0 & 6\end{array}\right]$
9. (a) $\sqrt{11}$
(b) $\frac{5}{3}+2(t-1)$
10. $\frac{1}{2}-\frac{2}{\pi} \sin x$
11. (a) $\left[\begin{array}{cc}16 & -4 \\ -4 & 1\end{array}\right]$
(b) $P=\frac{1}{\sqrt{17}}\left[\begin{array}{cc}-4 & 1 \\ 1 & 4\end{array}\right], Q^{\prime}=17 y_{1}^{2}$
(c) Positive semi-definite
12. $\sigma=\sqrt{3}, 1$
13. (a) $\left[\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{18} \\ 1 / \sqrt{2} & 1 / \sqrt{18} \\ 0 & -4 / \sqrt{18}\end{array}\right]^{T}$
(b) $5\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]\left[\begin{array}{lll}1 / \sqrt{2} & 1 / \sqrt{2} & 0\end{array}\right]$ $+3\left[\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]\left[\begin{array}{lll}-1 / \sqrt{18} & 1 / \sqrt{18} & -4 / \sqrt{18}\end{array}\right]$
14. (a) $(\lambda-2)^{2}$
(b) λ
(c) $\lambda-3$
15. (a) Sum is direct. One should check that all the appropriate intersections are trivial.
(b) Not direct: $\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right] \in H_{1} \cap H_{2}$
16. $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1 \\ -1 / 2 & 1 / 2 & 0\end{array}\right]$
17. (a) $|z|=\operatorname{Re}(z) \Rightarrow \sqrt{a^{2}+b^{2}}=a \Rightarrow b=0 \Rightarrow z=a \in$ \mathbb{R}
(b) $z=a=\sqrt{a^{2}+b^{2}} \geq 0$
18. $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}4 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]\right\}$
19. $\left[\begin{array}{cc}2^{k} & 0 \\ 3^{k}-2^{k} & 3^{k}\end{array}\right]$
20. $A x=\lambda_{1} x$ and $A x=\lambda_{2} x \Rightarrow \lambda_{1} x=\lambda_{2} x \Rightarrow\left(\lambda_{1}-\lambda_{2}\right) x=$ $\mathbf{0} \Rightarrow x=\mathbf{0}\left(\right.$ since $\left.\lambda_{1} \neq \lambda_{2}\right)$
21. $a=-6$
22. $(\Rightarrow): w \in H^{\perp} \Rightarrow\langle w, x\rangle=0 \forall x \in H \Rightarrow\langle w, u\rangle=$ $\langle w, v\rangle=0$
$(\Leftarrow):\langle w, u\rangle=\langle w, v\rangle=0 \Rightarrow \forall a, b \in \mathbb{R}$ we have $\langle w, a u+$ $b v\rangle=a\langle w, u\rangle+b\langle w, v\rangle=0+0=0 \Rightarrow w \in H^{\perp}$
23. (a) The minimum polynomial of A is of degree 3 , so no polynomial p of degree 2 can satisfy $p(A)=0$.
(b) $m_{A}(A)=0 \Rightarrow A(A-2 I)(A+3 I)=0 \Rightarrow A^{3}+$ $A^{2}-6 A=0 \Rightarrow A^{3}=-A^{2}+6 A$
