DDC Final Exam (May 2018)

- 1. [1] Write $14e^{i\frac{3\pi}{2}}$ in rectangular form.
- 2. [1] Find i^{-63} . Write your answer in rectangular form.
- 3. [2] Find the real and imaginary parts of $\frac{4}{5-3i}$.
- 4. [2] Sketch the set $\{z \in \mathbb{C} : |z-4-3i|=3\}$ in the complex plane.
- 5. **[6]** Given $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}, \mathcal{E} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\},$ $\mathbf{x} = \begin{bmatrix} 5 \\ -4 \end{bmatrix}, [\mathbf{y}]_{\mathcal{B}} = \begin{bmatrix} 7 \\ 4 \end{bmatrix} \text{ find:}$
 - (a) $[\mathbf{x}]_{\mathcal{B}}$ (b) $[\mathbf{x}]_{\mathcal{E}}$ (c) \mathbf{y} (d) $[\mathbf{y}]_{\mathcal{E}}$
- 6. [5] Given that the eigenvalues of $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$ are $\lambda = 1, 2$, diagonalize A (find P and D such that $A = PDP^{-1}$).
- 7. [4] Define $T: \mathbb{P}_1 \to \mathbb{R}^2$ by $T(p) = \begin{bmatrix} p(2) \\ p(3) \end{bmatrix}$.
 - (a) Find the matrix of T relative to the basis $\{1, t\}$ for \mathbb{P}_1 and the standard basis for \mathbb{R}^2 .
 - (b) Find the matrix of T relative to the basis $\mathcal{B} = \{t, 1-2t\}$ for \mathbb{P}_1 and the basis $\mathcal{C} = \left\{\begin{bmatrix} 4\\6 \end{bmatrix}, \begin{bmatrix} 3\\5 \end{bmatrix}\right\}$ for \mathbb{R}^2 .
- 8. **[5]** Let $A = \begin{bmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{bmatrix}$.
 - (a) Find the eigenvalues of A.
 - (b) Factor A into SR where S is a scaling and R is a rotation. Be sure to identify the angle of rotation.
- 9. [5] Let $\mathbf{x}_k = \begin{bmatrix} O_k \\ R_k \end{bmatrix}$ where O_k is the owl population and R_k is the wood rat population in a certain region at time k. Assume further that $\mathbf{x}_{k+1} = A\mathbf{x}_k$ where $A = \begin{bmatrix} 0.1 & 0.6 \\ -0.3 & 1 \end{bmatrix}$.
 - (a) Find a formula for \mathbf{x}_k , given that $\mathbf{x}_0 = \begin{bmatrix} 110 \\ 70 \end{bmatrix}$.
 - (b) Does the wood rat population grow or decline?
- 10. [5] Write y as the sum of a vector in $W = \text{Span}\{u_1, u_2\}$ and a vector in W^{\perp} . Use the dot product.

(a)
$$y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $u_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

(b)
$$y = \begin{bmatrix} 4 \\ -6 \\ 1 \end{bmatrix}$$
, $u_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $u_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$

11. **[5]** Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
.

- (a) Find an orthogonal basis for Col(A).
- (b) Find a QR factorization of A.
- 12. **[6]** Let \mathbb{P}_2 (polynomials of degree at most two) have the inner product $\langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$.
 - (a) Use the Gram-Schmidt process to find an orthogonal basis for $H = \text{Span}\{1, t^2\}$.
 - (b) Find an **orthonormal** basis for H^{\perp} .
- 13. **[6]** Find the second order Fourier approximation of f(x) = 1 + x over the interval $[0, 2\pi]$.
- 14. [6] Consider the quadratic form on \mathbb{R}^2 : $Q(\mathbf{x}) = -6x_1x_2$
 - (a) Find a symmetric matrix A such that $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.
 - (b) Make a change of variable $\mathbf{x} = P\mathbf{y}$, P orthogonal, that transforms Q into a quadratic form with no cross-product term. Clearly state P and the new quadratic form.
 - (c) Classify Q.
- 15. **[6]** Find a singular value decomposition of $A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$.

Hint: The eigenvalues of $A^T A$ are 18 and 0.

- 16. **[5]** Find the minimum polynomial of $A = \begin{bmatrix} -2 & -1 & 1 \\ 2 & 1 & -3 \\ 0 & 0 & -1 \end{bmatrix}$ Hint: the eigenvalues are 0 and -1.
- 17. **[6]** Given $H = \left\{ \begin{bmatrix} x \\ x \\ x \end{bmatrix} : x \in \mathbb{R} \right\}$, find:
 - (a) Subspaces H_1, H_2 of \mathbb{R}^3 , so that $H \oplus H_1 \oplus H_2 = \mathbb{R}^3$
 - (b) H_3 , a subspace of \mathbb{R}^3 , such that $H^{\perp} \oplus H_3 = \mathbb{R}^3$
 - (c) H_4 , a subspace of \mathbb{R}^3 , such that

$$H \oplus H_4 = \left\{ \begin{bmatrix} 2x \\ x+y \\ 2y \end{bmatrix} : x,y \in \mathbb{R} \right\}$$

18. [5] Find the Jordan canonical form of

$$A = \begin{bmatrix} -2 & 2 & 1 \\ -7 & 4 & 2 \\ 6 & 0 & 0 \end{bmatrix}. \text{ Hint: } m_A(\lambda) = \lambda^2(\lambda - 2).$$

- 19. [2] For which value(s) of $a \in \mathbb{R}$ is $A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & 4 \end{bmatrix}$ diagonalizable?
- 20. [3] Let $V = \text{Span}\{f_1, f_2\}$ where $f_1 = 4 \sin x \cos x$, $f_2 = -2 \sin x + 2 \cos x$, $g_1 = 2 \sin x + \cos x$, $g_2 = 3 \cos x$. Find the transition matrix from $\mathcal{B} = \{f_1, f_2\}$ to $\mathcal{C} = \{g_1, g_2\}$.
- 21. [4] Let $A = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$ where $a, b \in \mathbb{R}$ and a and b are not both zero.

- (a) Find the eigenvalues of A.
- (b) Describe the eigenspaces of A.
- (c) Find an a and b that make A **not** diagonalizable.
- 22. [2] Let A be a 2×2 real symmetric matrix with two distinct eigenvalues. If $\begin{bmatrix} b \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 6 \\ 4 \end{bmatrix}$ are eigenvectors of A, what are the possible values of b?
- 23. [3] Let $A = \begin{bmatrix} 3/5 & c & 4/5 \\ a & 1 & e \\ b & d & f \end{bmatrix}$ be orthogonal where $a,b,c,d,e,f \in \mathbb{R}$ and b>0. Find a,b,c,d,e, and f
- 24. **[2**]
 - (a) Find 2×2 matrices A and B, $A \neq B$, that have the same characteristic polynomial and the same minimum polynomial.
 - (b) Find 2×2 matrices A and B that have the same characteristic polynomial but different minimum polynomials.
- 25. [3] Let $z, w \in \mathbb{C}$ such that $\bar{z}w \neq 1$ and either |z| = 1 or |w| = 1. Show that $\left| \frac{z w}{1 \bar{z}w} \right| = 1$.

Answers

- 1. -14i
- 2. *i*
- $3. \ \frac{10}{17}, \frac{6}{17}$
- 4. Circle of radius 3 in the complex plane, centered at 4+3i.
- 5. (a) $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ (b) $\begin{bmatrix} 5 \\ -4 \end{bmatrix}$ (c) $\begin{bmatrix} 11 \\ -10 \end{bmatrix}$ (d) $\begin{bmatrix} 11 \\ -10 \end{bmatrix}$
- 6. $P = \begin{bmatrix} -2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
- 7. (a) $\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1/2 & 0 \\ 0 & -1 \end{bmatrix}$
- 8. (a) $1 \pm i\sqrt{3}$
 - (b) $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{bmatrix}, \quad \theta = -\pi/3$
- 9. (a) $\mathbf{x}_k = 30(0.7)^k \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 40(0.4)^k \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
 - (b) $0 < \lambda < 1 \ (both) \implies$ decline.
- 10. (a) $\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$

(b)
$$\begin{bmatrix} 2 \\ -4 \\ -3 \end{bmatrix} + \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}$$

11. (a)
$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} -2\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right\}$$

(b)
$$\begin{bmatrix} 1/\sqrt{3} & -2/\sqrt{6} & 0\\ 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2}\\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 2/\sqrt{3} & 1/\sqrt{3}\\ 0 & 2/\sqrt{6} & 1/\sqrt{6}\\ 0 & 0 & 1/\sqrt{2} \end{bmatrix}$$

- 12. (a) $\{1, t^2 \frac{2}{3}\}$
 - (b) $\{\frac{1}{\sqrt{2}}t\}$
- 13. $1 + \pi 2\sin t \sin 2t$
- 14. (a) $\begin{bmatrix} 0 & -3 \\ -3 & 0 \end{bmatrix}$

(b)
$$P = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
, $Q' = 3y_1^2 - 3y_2^2$

(c) indefinite

15.
$$\begin{bmatrix} 1/3 & 2/\sqrt{5} & -2/\sqrt{45} \\ -2/3 & 1/\sqrt{5} & 4/\sqrt{45} \\ 2/3 & 0 & 5/\sqrt{45} \end{bmatrix} \begin{bmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

- 16. $\lambda(\lambda+1)^2$
- 17. (a) Span $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$, Span $\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$
 - (b) *H*
 - (c) Span $\left\{ \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$

18.
$$P^{-1}AP = J$$
, where $P = \begin{bmatrix} 0 & 1 & 2 \\ -3 & 1 & 1 \\ 6 & 0 & 6 \end{bmatrix}$, $J = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

- 19. $a \neq 3, 4$
- $20. \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$
- 21. (a) $\lambda = 0, a + b$

(b)
$$E_0 = \operatorname{Span}\left\{ \begin{bmatrix} -b \\ a \end{bmatrix} \right\}, \quad E_{a+b} = \operatorname{Span}\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

(c) $a = 1, b = -1$

- 22. $b = -2, \frac{9}{2}$
- 23. a = c = d = e = 0, $b = \frac{4}{5}$, $f = \frac{-3}{5}$
- 24. (a) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$
 - (b) $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$
- 25. If |z| = 1 then $|z w| = |\bar{z}||z w| = |1 \bar{z}w|$, and if |w| = 1 then $|z w| = |\bar{w} \bar{z}| = |\bar{w} \bar{z}||w| = |1 \bar{z}w|$.