DDC Final Exam (May 2018)

1. [1] Write $14 e^{i \frac{3 \pi}{2}}$ in rectangular form.
2. [1] Find i^{-63}. Write your answer in rectangular form.
3. [2] Find the real and imaginary parts of $\frac{4}{5-3 i}$.
4. [2] Sketch the set $\{z \in \mathbb{C}:|z-4-3 i|=3\}$ in the complex plane.
5. [6] Given $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ -2\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}, \mathcal{E}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$, $\mathbf{x}=\left[\begin{array}{c}5 \\ -4\end{array}\right],[\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{l}7 \\ 4\end{array}\right]$ find:
(a) $[\mathbf{x}]_{\mathcal{B}}$
(b) $[\mathbf{x}]_{\mathcal{E}}$
(c) $\mathbf{y}(\mathrm{d})[\mathbf{y}]_{\mathcal{E}}$
6. [5] Given that the eigenvalues of $A=\left[\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$ are $\lambda=1,2$, diagonalize A (find P and D such that $A=P D P^{-1}$.
7. [4] Define $T: \mathbb{P}_{1} \rightarrow \mathbb{R}^{2}$ by $T(p)=\left[\begin{array}{l}p(2) \\ p(3)\end{array}\right]$.
(a) Find the matrix of T relative to the basis $\{1, t\}$ for \mathbb{P}_{1} and the standard basis for \mathbb{R}^{2}.
(b) Find the matrix of T relative to the basis $\mathcal{B}=$ $\{t, 1-2 t\}$ for \mathbb{P}_{1} and the basis $\mathcal{C}=\left\{\left[\begin{array}{l}4 \\ 6\end{array}\right],\left[\begin{array}{l}3 \\ 5\end{array}\right]\right\}$ for \mathbb{R}^{2}.
8. [5] Let $A=\left[\begin{array}{cc}1 & \sqrt{3} \\ -\sqrt{3} & 1\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) Factor A into $S R$ where S is a scaling and R is a rotation. Be sure to identify the angle of rotation.
9. [5] Let $\mathbf{x}_{k}=\left[\begin{array}{l}O_{k} \\ R_{k}\end{array}\right]$ where O_{k} is the owl population and R_{k} is the wood rat population in a certain region at time k. Assume further that $\mathbf{x}_{k+1}=A \mathbf{x}_{k}$ where $A=\left[\begin{array}{cc}0.1 & 0.6 \\ -0.3 & 1\end{array}\right]$.
(a) Find a formula for \mathbf{x}_{k}, given that $\mathbf{x}_{0}=\left[\begin{array}{c}110 \\ 70\end{array}\right]$.
(b) Does the wood rat population grow or decline?
10. [5] Write y as the sum of a vector in $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$ and a vector in W^{\perp}. Use the dot product.
(a) $y=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], u_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], u_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
(b) $y=\left[\begin{array}{c}4 \\ -6 \\ 1\end{array}\right], u_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], u_{2}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$
11. [5] Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$.
(a) Find an orthogonal basis for $\operatorname{Col}(A)$.
(b) Find a QR factorization of A.
12. [6] Let \mathbb{P}_{2} (polynomials of degree at most two) have the inner product $\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)$.
(a) Use the Gram-Schmidt process to find an orthogonal basis for $H=\operatorname{Span}\left\{1, t^{2}\right\}$.
(b) Find an orthonormal basis for H^{\perp}.
13. [6] Find the second order Fourier approximation of $f(x)=1+x$ over the interval $[0,2 \pi]$.
14. [6] Consider the quadratic form on $\mathbb{R}^{2}: Q(\mathbf{x})=-6 x_{1} x_{2}$
(a) Find a symmetric matrix A such that $Q(\mathbf{x})=$ $\mathbf{x}^{T} A \mathbf{x}$.
(b) Make a change of variable $\mathbf{x}=P \mathbf{y}, P$ orthogonal, that transforms Q into a quadratic form with no cross-product term. Clearly state P and the new quadratic form.
(c) Classify Q.
15. [6] Find a singular value decomposition of $A=\left[\begin{array}{cc}1 & -1 \\ -2 & 2 \\ 2 & -2\end{array}\right]$. Hint: The eigenvalues of $A^{T} A$ are 18 and 0.
16. [5] Find the minimum polynomial of $A=\left[\begin{array}{ccc}-2 & -1 & 1 \\ 2 & 1 & -3 \\ 0 & 0 & -1\end{array}\right]$
Hint: the eigenvalues are 0 and -1 . Hint: the eigenvalues are 0 and -1 .
17. [6] Given $H=\left\{\left[\begin{array}{l}x \\ x \\ x\end{array}\right]: x \in \mathbb{R}\right\}$, find:
(a) Subspaces H_{1}, H_{2} of \mathbb{R}^{3}, so that $H \oplus H_{1} \oplus H_{2}=\mathbb{R}^{3}$
(b) H_{3}, a subspace of \mathbb{R}^{3}, such that $H^{\perp} \oplus H_{3}=\mathbb{R}^{3}$
(c) H_{4}, a subspace of \mathbb{R}^{3}, such that

$$
H \oplus H_{4}=\left\{\left[\begin{array}{c}
2 x \\
x+y \\
2 y
\end{array}\right]: x, y \in \mathbb{R}\right\}
$$

18. [5] Find the Jordan canonical form of

$$
A=\left[\begin{array}{ccc}
-2 & 2 & 1 \\
-7 & 4 & 2 \\
6 & 0 & 0
\end{array}\right] . \text { Hint: } m_{A}(\lambda)=\lambda^{2}(\lambda-2)
$$

19. [2] For which value(s) of $a \in \mathbb{R}$ is $A=\left[\begin{array}{lll}3 & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & 4\end{array}\right]$ diagonalizable?
20. [3] Let $V=\operatorname{Span}\left\{f_{1}, f_{2}\right\}$ where $f_{1}=4 \sin x-\cos x$, $f_{2}=-2 \sin x+2 \cos x, g_{1}=2 \sin x+\cos x, g_{2}=3 \cos x$. Find the transition matrix from $\mathcal{B}=\left\{f_{1}, f_{2}\right\}$ to $\mathcal{C}=$ $\left\{g_{1}, g_{2}\right\}$.
21. [4] Let $A=\left[\begin{array}{ll}a & b \\ a & b\end{array}\right]$ where $a, b \in \mathbb{R}$ and a and b are not both zero.
(a) Find the eigenvalues of A.
(b) Describe the eigenspaces of A.
(c) Find an a and b that make A not diagonalizable.
22. [2] Let A be a 2×2 real symmetric matrix with two distinct eigenvalues. If $\left[\begin{array}{l}b \\ 3\end{array}\right]$ and $\left[\begin{array}{l}6 \\ 4\end{array}\right]$ are eigenvectors of A, what are the possible values of b ?
23. [3] Let $A=\left[\begin{array}{ccc}3 / 5 & c & 4 / 5 \\ a & 1 & e \\ b & d & f\end{array}\right]$ be orthogonal where $a, b, c, d, e, f \in \mathbb{R}$ and $b>0$. Find a, b, c, d, e, and f.
24. [2]
(a) Find 2×2 matrices A and $B, A \neq B$, that have the same characteristic polynomial and the same minimum polynomial.
(b) Find 2×2 matrices A and B that have the same characteristic polynomial but different minimum polynomials.
25. [3] Let $z, w \in \mathbb{C}$ such that $\bar{z} w \neq 1$ and either $|z|=1$ or $|w|=1$. Show that $\left|\frac{z-w}{1-\bar{z} w}\right|=1$.

Answers

1. $-14 i$
2. i
3. $\frac{10}{17}, \frac{6}{17}$
4. Circle of radius 3 in the complex plane, centered at $4+3 i$.
5. (a) $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ (b) $\left[\begin{array}{c}5 \\ -4\end{array}\right]$ (c) $\left[\begin{array}{c}11 \\ -10\end{array}\right]$ (d) $\left[\begin{array}{c}11 \\ -10\end{array}\right]$
6. $P=\left[\begin{array}{ccc}-2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1\end{array}\right], D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
7. (a) $\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$
(b) $\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & -1\end{array}\right]$
8. (a) $1 \pm i \sqrt{3}$
(b) $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{cc}1 / 2 & \sqrt{3} / 2 \\ -\sqrt{3} / 2 & 1 / 2\end{array}\right], \quad \theta=-\pi / 3$
9. (a) $\mathbf{x}_{k}=30(0.7)^{k}\left[\begin{array}{l}1 \\ 1\end{array}\right]+40(0.4)^{k}\left[\begin{array}{l}2 \\ 1\end{array}\right]$
(b) $0<\lambda<1$ (both) \Longrightarrow decline.
10. (a) $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{c}2 \\ -4 \\ -3\end{array}\right]+\left[\begin{array}{c}2 \\ -2 \\ 4\end{array}\right]$
11. (a) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right\}$
(b) $\left[\begin{array}{ccc}1 / \sqrt{3} & -2 / \sqrt{6} & 0 \\ 1 / \sqrt{3} & 1 / \sqrt{6} & -1 / \sqrt{2} \\ 1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{2}\end{array}\right]\left[\begin{array}{ccc}\sqrt{3} & 2 / \sqrt{3} & 1 / \sqrt{3} \\ 0 & 2 / \sqrt{6} & 1 / \sqrt{6} \\ 0 & 0 & 1 / \sqrt{2}\end{array}\right]$
12. (a) $\left\{1, t^{2}-\frac{2}{3}\right\}$
(b) $\left\{\frac{1}{\sqrt{2}} t\right\}$
13. $1+\pi-2 \sin t-\sin 2 t$
14. (a) $\left[\begin{array}{cc}0 & -3 \\ -3 & 0\end{array}\right]$
(b) $P=\left[\begin{array}{cc}-1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right], \quad Q^{\prime}=3 y_{1}^{2}-3 y_{2}^{2}$
(c) indefinite
15. $\left[\begin{array}{ccc}1 / 3 & 2 / \sqrt{5} & -2 / \sqrt{45} \\ -2 / 3 & 1 / \sqrt{5} & 4 / \sqrt{45} \\ 2 / 3 & 0 & 5 / \sqrt{45}\end{array}\right]\left[\begin{array}{cc}3 \sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$
16. $\lambda(\lambda+1)^{2}$
17. (a) $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}, \operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$
(b) H
(c) $\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$
18. $P^{-1} A P=J$, where $P=\left[\begin{array}{ccc}0 & 1 & 2 \\ -3 & 1 & 1 \\ 6 & 0 & 6\end{array}\right], J=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]$
19. $a \neq 3,4$
20. $\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]$
21. (a) $\lambda=0, a+b$
(b) $E_{0}=\operatorname{Span}\left\{\left[\begin{array}{c}-b \\ a\end{array}\right]\right\}, \quad E_{a+b}=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$
(c) $a=1, b=-1$
22. $b=-2, \frac{9}{2}$
23. $a=c=d=e=0, b=\frac{4}{5}, f=\frac{-3}{5}$
24. (a) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right],\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
25. If $|z|=1$ then $|z-w|=|\bar{z}||z-w|=|1-\bar{z} w|$, and if $|w|=1$ then $|z-w|=|\bar{w}-\bar{z}|=|\bar{w}-\bar{z}||w|=|1-\bar{z} w|$.
