DDC Final Exam (May 2019)

1. [2] Write $z=-5-5 i$ in polar form.
2. [2] Find all complex solutions to $z^{4}=-16$.
3. [3] Sketch the set $\left\{z \in \mathbb{C}: \operatorname{Re}\left(z^{2}\right)+(\operatorname{Im}(z))^{2}=\operatorname{Im}(z)\right\}$ in the complex plane.
4. [4] Let $\mathcal{A}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ be bases of a vector space V, and suppose that $\mathbf{a}_{1}=\mathbf{b}_{2}, \mathbf{a}_{2}=\mathbf{b}_{1}+\mathbf{b}_{2}$. Find
(a) $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x}=3 \mathbf{a}_{1}+4 \mathbf{a}_{2}$.
(b) the change-of-coordinates matrix from \mathcal{B} to \mathcal{A}.
5. [5] In \mathbb{P}_{1}.
(a) Find the change-of-coordinates matrix from the basis $\mathcal{B}=\{1, t\}$ to the basis $\mathcal{C}=\{1+2 t, 3-t\}$.
(b) Find the change-of-coordinates matrix from the basis $\mathcal{B}=\{t, 1+4 t\}$ to the basis $\mathcal{C}=\{1+2 t, 1+t\}$.
6. [4] Find the eigenvalues of $A=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$.
7. [5] Define $T: \mathbb{P}_{1} \rightarrow \mathbb{R}^{2}$ by $T(p)=\left[\begin{array}{l}p(2) \\ p(3)\end{array}\right]$.
(a) Find the matrix of T relative to the basis $\{1, t\}$ of \mathbb{P}_{1} and the standard basis of \mathbb{R}^{2}.
(b) Find the matrix of T relative to the basis $\mathcal{B}=$ $\{1-2 t, t\}$ of \mathbb{P}_{1} and the basis $\mathcal{C}=\left\{\left[\begin{array}{l}3 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]\right\}$ of \mathbb{R}^{2}.
8. [7] Let $A=\left[\begin{array}{cc}0.5 & -0.6 \\ 0.75 & 1.1\end{array}\right]$.
(a) Show that the eigenvalues of A are $\lambda=0.8 \pm 0.6 i$.
(b) Find the general real solution of $\frac{d \mathrm{x}}{d t}=A \mathrm{x}$.
(c) Describe the shapes of typical trajectories.
9. [3]
(a) Find a 2×2 matrix that is diagonalizable but not invertible.
(b) Find a 2×2 matrix that is invertible but not diagonalizable.
(c) Find a 2×2 matrix that has eigenvalues 0 and 4 but no zero entries.
10. [5] Let $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right]$. Use diagonalization to find a formula for A^{k} where k is a positive integer.
11. [2] Show that if $A^{2}=0$ then the only possible eigenvalue of A is 0 .
12. [3] For this question we're in \mathbb{R}^{2} with the usual dot product. Is the set orthonormal, orthogonal (but not orthonormal), or neither?
(a) $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{c}3 / 5 \\ 4 / 5\end{array}\right],\left[\begin{array}{c}4 / 5 \\ -3 / 5\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{c}1 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
13. [3] Assume that A is $m \times 4$ with orthogonal columns of length $1,3,2,5$. What is $A^{T} A$? Justify your answer.
14. [6] Find the orthogonal projection of \mathbf{y} onto $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Use the dot product.
(a) $\mathbf{y}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$
(b) $\mathbf{y}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
15. [4] Find a QR factorization of $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1 \\ 1 & 4\end{array}\right]$.
16. [7] Let \mathbb{P}_{2} (polynomials of degree at most two) have the inner product $\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)$.
(a) Compute $\left\langle t+1, t^{2}-t\right\rangle$.
(b) Compute $\|t+1\|$.
(c) Let $H=\operatorname{Span}\{t+1\}$. Find an orthogonal basis of H^{\perp}.
17. [3] Consider the rectangle of maximum area that fits inside the ellipse $36 x_{1}^{2}+x_{2}^{2}=9$. Use a quadratic form to find an intersection point of this rectangle with the ellipse. Show your work, don't use a memorized formula.
18. [2] Let A be a 2×2 real symmetric matrix with two distinct eigenvalues. If $\left[\begin{array}{l}b \\ 3\end{array}\right]$ and $\left[\begin{array}{c}-4 \\ 9\end{array}\right]$ are eigenvectors of A, what are the possible values of b ?
19. [4] Find a singular value decomposition of

$$
A=\left[\begin{array}{cc}
5 & 5 \\
-1 & 7
\end{array}\right]
$$

The eigenvalues of $A^{T} A=\left[\begin{array}{ll}26 & 18 \\ 18 & 74\end{array}\right]$ are 20 and 80 .
20. [6] Find the minimum polynomial of the given matrix.
(a) $A=\left[\begin{array}{ll}4 & 0 \\ 1 & 4\end{array}\right]$
(b) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
(c) $A=\left[\begin{array}{lllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 7\end{array}\right]$
21. [3] Given $H_{1}=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x-y-z=0\right\}$,
$H_{2}=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x=2 y\right.$ and $\left.y=z\right\}, \quad H_{3}=\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$,
show that the sum $H_{1}+H_{2}+H_{3}$ is direct or explain why it is not.
22. [5] Find the Jordan canonical form (and corresponding transition matrix) of

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
-2 & 1 & 2
\end{array}\right] \quad \text { Hint: } m_{A}(\lambda)=\lambda^{2}(\lambda-2)
$$

23. [2] Assume that A is a square matrix with minimum polynomial $m_{A}(\lambda)=(\lambda-1)(\lambda+1)(\lambda-4)$. Explain why $A^{2}-3 A-4 I \neq 0$.
24. [2] Given that $z \in \mathbb{C}$ is not real and $|z|=1$, show that $\operatorname{Re}\left(\frac{z-1}{z+1}\right)=0$.
25. [2] Let H_{1}, H_{2}, H_{3} be subspaces of a vector space V. Is the equation

$$
H_{1} \cap\left(H_{2}+H_{3}\right)=H_{1} \cap H_{2}+H_{1} \cap H_{3}
$$

always true? Give a proof or find a counterexample.
26. [2] The least-squares line for the data $(0,0),(1, d),(2,7)$ is $y=-\frac{1}{2}+\frac{7}{2} x$. Find d.
27. [4] Answer exactly two of the following four questions.
(a) For which value(s) of $d \in \mathbb{R}$ is the 2×2 matrix

$$
\left[\begin{array}{ll}
d+1 & 1 \\
3-d & 3
\end{array}\right]
$$

diagonalizable? You may wish to use the Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

(b) Let A be $n \times n$ and diagonalizable with the only eigenvalues being 1 and -1 . Show that $A^{2}=I_{n}$.
(c) Orthogonally diagonalize $\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ where $b \neq 0$. Clearly state P and D. Hint: start by trying to guess an eigenvector.
(d) Let A be an $n \times n$ orthogonal matrix and let $\lambda \in \mathbb{C}$ be an eigenvalue of A. Show that $|\lambda|=1$. Hint: calculate $\|A \mathbf{x}\|^{2}$.

Answers

1. $5 \sqrt{2} e^{5 \pi i / 4}$
2. The parabola $b=a^{2}$.
3. $2 e^{i \phi}$ where $\phi=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4$
4. (a) $\left[\begin{array}{l}4 \\ 7\end{array}\right]$
(b) $\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]$
5. (a) $\frac{1}{7}\left[\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & 3 \\ -1 & -2\end{array}\right]$
6. $-2,1$
7. (a) $\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$
(b) $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
8. (a)
(b) $c_{1}\left[\begin{array}{c}-0.3 \cos (0.6 t)-0.6 \sin (0.6 t) \\ 0.75 \cos (0.6 t)\end{array}\right] e^{0.8 t}$
$+c_{2}\left[\begin{array}{c}0.6 \cos (0.6 t)-0.3 \sin (0.6 t) \\ 0.75 \sin (0.6 t)\end{array}\right] e^{0.8 t}$
(answers will vary)
(c) Sprirals out.
9. (answers will vary)
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$
10. $\left[\begin{array}{cc}1 & 0 \\ 1-2^{k} & 2^{k}\end{array}\right]$
11. Hint: start with $A \mathbf{x}=\lambda \mathbf{x}$, multiply both sides by A.
12. (a) neither
(b) orthonormal
(c) orthogonal (but not orthonormal)
13. $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 25\end{array}\right]$
14. (a) $\left[\begin{array}{c}0 \\ 1 / 2 \\ 1 / 2\end{array}\right]$
(b) $\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ 0\end{array}\right]$
15. $\left[\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{3} \\ 0 & 1 / \sqrt{3} \\ 1 / \sqrt{2} & 1 / \sqrt{3}\end{array}\right]\left[\begin{array}{cc}\sqrt{2} & 3 \sqrt{2} \\ 0 & \sqrt{3}\end{array}\right]$
16. (a) 0
(b) $\sqrt{5}$
(c) $\left\{t^{2}-t, 5 t^{2}+t-4\right\}$
17. $(1 / 2 \sqrt{2}, 3 / \sqrt{2})$
18. $27 / 4,-4 / 3$
19. $\left[\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]\left[\begin{array}{cc}4 \sqrt{5} & 0 \\ 0 & 2 \sqrt{5}\end{array}\right]\left[\begin{array}{cc}1 / \sqrt{10} & 3 / \sqrt{10} \\ -3 / \sqrt{10} & 1 / \sqrt{10}\end{array}\right]$
20. (a) $(\lambda-4)^{2}$
(b) $\lambda(\lambda-1)$
(c) $(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)(\lambda-5)(\lambda-6)(\lambda-7)$
21. It is not direct since $H_{1} \cap\left(H_{2}+H_{3}\right)=H_{1} \cap H_{2}=H_{2} \neq$ $\{\mathbf{0}\}$.
22. $P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], J=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right], P^{-1} A P=J$
23. If it were 0 then $(\lambda-4)(\lambda+1)$ would be a degree two polynomial that evaluates to zero when we plug in A. This is impossible since $\operatorname{deg}\left(m_{A}\right)=3$.
24. $\frac{z-1}{z+1}=\frac{(z-1)(\bar{z}-1)}{(z+1)(\bar{z}-1)}=\ldots$ (continue the this calculation; at some point replace $z \bar{z}$ with 1 and then separate into real and imaginary parts; you may wish to replace z with $a+b i$)
25. Not always true. Counterexample: three distinct lines through the origin in \mathbb{R}^{2}.
26. 2
27. (a) $d \neq 4$
(b) $A^{2}=P D P^{-1} P D P^{-1}=P D^{2} P^{-1}=P I P^{-1}=I$
(c) $P=\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right], D=\left[\begin{array}{cc}a+b & 0 \\ 0 & a-b\end{array}\right]$
(d) hint: $\|A \mathbf{x}\|^{2}=\|\lambda \mathbf{x}\|^{2}=\ldots$ and also $\|A \mathbf{x}\|^{2}=(A \mathbf{x}) \cdot(A \mathbf{x})=\ldots$
