DDC Final Exam (May 2019)

- 1. [2] Write z = -5 5i in polar form.
- 2. [2] Find all complex solutions to $z^4 = -16$.
- 3. [3] Sketch the set $\{z \in \mathbb{C} : \operatorname{Re}(z^2) + (\operatorname{Im}(z))^2 = \operatorname{Im}(z)\}$ in the complex plane.
- 4. [4] Let $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2\}$ and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ be bases of a vector space V, and suppose that $\mathbf{a}_1 = \mathbf{b}_2$, $\mathbf{a}_2 = \mathbf{b}_1 + \mathbf{b}_2$. Find
 - (a) $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x} = 3\mathbf{a}_1 + 4\mathbf{a}_2$.
 - (b) the change-of-coordinates matrix from \mathcal{B} to \mathcal{A} .
- 5. [5] In \mathbb{P}_1 .
 - (a) Find the change-of-coordinates matrix from the basis $\mathcal{B} = \{1, t\}$ to the basis $\mathcal{C} = \{1 + 2t, 3 t\}$.
 - (b) Find the change-of-coordinates matrix from the basis $\mathcal{B} = \{t, 1+4t\}$ to the basis $\mathcal{C} = \{1+2t, 1+t\}$.
- 6. [4] Find the eigenvalues of $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$.
- 7. **[5]** Define $T: \mathbb{P}_1 \to \mathbb{R}^2$ by $T(p) = \begin{bmatrix} p(2) \\ p(3) \end{bmatrix}$.
 - (a) Find the matrix of T relative to the basis $\{1, t\}$ of \mathbb{P}_1 and the standard basis of \mathbb{R}^2 .
 - (b) Find the matrix of T relative to the basis $\mathcal{B} = \{1 2t, t\}$ of \mathbb{P}_1 and the basis $\mathcal{C} = \left\{ \begin{bmatrix} 3 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\}$ of \mathbb{R}^2 .
- 8. [7] Let $A = \begin{bmatrix} 0.5 & -0.6 \\ 0.75 & 1.1 \end{bmatrix}$.
 - (a) Show that the eigenvalues of A are $\lambda = 0.8 \pm 0.6i$.
 - (b) Find the general **real** solution of $\frac{d\mathbf{x}}{dt} = A\mathbf{x}.$
 - (c) Describe the shapes of typical trajectories.

9. **[3**]

- (a) Find a 2×2 matrix that is diagonalizable but not invertible.
- (b) Find a 2×2 matrix that is invertible but not diagonalizable.
- (c) Find a 2×2 matrix that has eigenvalues 0 and 4 but no zero entries.
- 10. [5] Let $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$. Use diagonalization to find a formula for A^k where k is a positive integer.
- 11. [2] Show that if $A^2 = 0$ then the only possible eigenvalue of A is 0.

- 12. [3] For this question we're in \mathbb{R}^2 with the usual dot product. Is the set orthonormal, orthogonal (but not orthonormal), or neither?
 - (a) Span $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$
 - (b) $\left\{ \begin{bmatrix} 3/5\\4/5 \end{bmatrix}, \begin{bmatrix} 4/5\\-3/5 \end{bmatrix} \right\}$
 - (c) $\left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$
- 13. [3] Assume that A is $m \times 4$ with orthogonal columns of length 1, 3, 2, 5. What is $A^T A$? Justify your answer.
- 14. [6] Find the orthogonal projection of \mathbf{y} onto Span $\{\mathbf{u}_1, \mathbf{u}_2\}$. Use the dot product.

(a)
$$\mathbf{y} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$

(b)
$$\mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

- 15. [4] Find a QR factorization of $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 4 \end{bmatrix}$.
- 16. [7] Let \mathbb{P}_2 (polynomials of degree at most two) have the inner product $\langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$.
 - (a) Compute $\langle t+1, t^2-t \rangle$.
 - (b) Compute ||t+1||.
 - (c) Let $H = \text{Span}\{t+1\}$. Find an orthogonal basis of H^{\perp} .
- 17. [3] Consider the rectangle of maximum area that fits inside the ellipse $36x_1^2 + x_2^2 = 9$. Use a quadratic form to find an intersection point of this rectangle with the ellipse. Show your work, don't use a memorized formula.
- 18. [2] Let A be a 2×2 real symmetric matrix with two distinct eigenvalues. If $\begin{bmatrix} b \\ 3 \end{bmatrix}$ and $\begin{bmatrix} -4 \\ 9 \end{bmatrix}$ are eigenvectors of A, what are the possible values of b?
- 19. [4] Find a singular value decomposition of

$$A = \begin{bmatrix} 5 & 5 \\ -1 & 7 \end{bmatrix}$$

The eigenvalues of $A^T A = \begin{bmatrix} 26 & 18 \\ 18 & 74 \end{bmatrix}$ are 20 and 80.

20. [6] Find the minimum polynomial of the given matrix.

(a)
$$A = \begin{bmatrix} 4 & 0 \\ 1 & 4 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\text{(c) } A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 7 \end{bmatrix}$$

21. [3] Given
$$H_1 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x - y - z = 0 \right\},$$

$$H_2 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x = 2y \text{ and } y = z \right\}, \quad H_3 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\},$$

show that the sum $H_1 + H_2 + H_3$ is direct or explain why it is not.

22. [5] Find the Jordan canonical form (and corresponding transition matrix) of

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ -2 & 1 & 2 \end{bmatrix}$$
 Hint: $m_A(\lambda) = \lambda^2(\lambda - 2)$.

- 23. [2] Assume that A is a square matrix with minimum polynomial $m_A(\lambda) = (\lambda 1)(\lambda + 1)(\lambda 4)$. Explain why $A^2 3A 4I \neq 0$.
- 24. [2] Given that $z \in \mathbb{C}$ is not real and |z| = 1, show that $Re\left(\frac{z-1}{z+1}\right) = 0$.
- 25. [2] Let H_1 , H_2 , H_3 be subspaces of a vector space V. Is the equation

$$H_1 \cap (H_2 + H_3) = H_1 \cap H_2 + H_1 \cap H_3$$

always true? Give a proof or find a counterexample.

- 26. [2] The least-squares line for the data (0,0), (1,d), (2,7) is $y = -\frac{1}{2} + \frac{7}{2}x$. Find d.
- 27. [4] Answer exactly two of the following four questions.
 - (a) For which value(s) of $d \in \mathbb{R}$ is the 2×2 matrix

$$\begin{bmatrix} d+1 & 1 \\ 3-d & 3 \end{bmatrix}$$

diagonalizable? You may wish to use the Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

- (b) Let A be $n \times n$ and diagonalizable with the only eigenvalues being 1 and -1. Show that $A^2 = I_n$.
- (c) Orthogonally diagonalize $\begin{bmatrix} a & b \\ b & a \end{bmatrix}$ where $b \neq 0$. Clearly state P and D. Hint: start by trying to guess an eigenvector.
- (d) Let A be an $n \times n$ orthogonal matrix and let $\lambda \in \mathbb{C}$ be an eigenvalue of A. Show that $|\lambda| = 1$. Hint: calculate $||A\mathbf{x}||^2$.

Answers

- 1. $5\sqrt{2}e^{5\pi i/4}$
- 2. The parabola $b = a^2$.
- 3. $2e^{i\phi}$ where $\phi = \pi/4, 3\pi/4, 5\pi/4, 7\pi/4$
- 4. (a) $\begin{bmatrix} 4 \\ 7 \end{bmatrix}$
 - (b) $\begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$
- 5. (a) $\frac{1}{7} \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 3 \\ -1 & -2 \end{bmatrix}$
- 6. -2, 1
- 7. (a) $\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$
 - (b) $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
- 8. (a)
 - (b) $c_1 \begin{bmatrix} -0.3\cos(0.6t) 0.6\sin(0.6t) \\ 0.75\cos(0.6t) \end{bmatrix} e^{0.8t} + c_2 \begin{bmatrix} 0.6\cos(0.6t) 0.3\sin(0.6t) \\ 0.75\sin(0.6t) \end{bmatrix} e^{0.8t}$ (answers will vary)
 - (c) Sprirals out.
- 9. (answers will vary)
 - (a) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
 - (c) $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$
- $10. \begin{bmatrix} 1 & 0 \\ 1 2^k & 2^k \end{bmatrix}$
- 11. Hint: start with $A\mathbf{x} = \lambda \mathbf{x}$, multiply both sides by A.
- 12. (a) neither
 - (b) orthonormal
 - (c) orthogonal (but not orthonormal)
- 13. $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 25 \end{bmatrix}$
- 14. (a) $\begin{bmatrix} 0\\1/2\\1/2 \end{bmatrix}$
 - $\begin{array}{c} \text{(b)} & \begin{bmatrix} 1/2\\1/2\\0 \end{bmatrix} \end{array}$

15.
$$\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{3} \\ 0 & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{3} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 3\sqrt{2} \\ 0 & \sqrt{3} \end{bmatrix}$$

- 16. (a) 0
 - (b) $\sqrt{5}$

(c)
$$\{t^2 - t, 5t^2 + t - 4\}$$

- 17. $(1/2\sqrt{2}, 3/\sqrt{2})$
- 18. 27/4, -4/3

19.
$$\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 4\sqrt{5} & 0 \\ 0 & 2\sqrt{5} \end{bmatrix} \begin{bmatrix} 1/\sqrt{10} & 3/\sqrt{10} \\ -3/\sqrt{10} & 1/\sqrt{10} \end{bmatrix}$$

- 20. (a) $(\lambda 4)^2$
 - (b) $\lambda(\lambda-1)$

(c)
$$(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda - 4)(\lambda - 5)(\lambda - 6)(\lambda - 7)$$

21. It is not direct since $H_1 \cap (H_2 + H_3) = H_1 \cap H_2 = H_2 \neq \{0\}.$

22.
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, J = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}, P^{-1}AP = J$$

- 23. If it were 0 then $(\lambda 4)(\lambda + 1)$ would be a degree two polynomial that evaluates to zero when we plug in A. This is impossible since $deg(m_A) = 3$.
- 24. $\frac{z-1}{z+1} = \frac{(z-1)(\bar{z}-1)}{(z+1)(\bar{z}-1)} = \dots$ (continue the this calculation; at some point replace $z\bar{z}$ with 1 and then separate into real and imaginary parts; you may wish to replace z with a+bi)
- 25. Not always true. Counterexample: three distinct lines through the origin in \mathbb{R}^2 .
- 26. 2
- 27. (a) $d \neq 4$

(b)
$$A^2 = PDP^{-1}PDP^{-1} = PD^2P^{-1} = PIP^{-1} = I$$

(c)
$$P = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$
, $D = \begin{bmatrix} a+b & 0 \\ 0 & a-b \end{bmatrix}$

(d) hint:
$$||A\mathbf{x}||^2 = ||\lambda\mathbf{x}||^2 = \dots$$

and also $||A\mathbf{x}||^2 = (A\mathbf{x}) \cdot (A\mathbf{x}) = \dots$