DDC Final Exam (May 2022)

- 1. [2] Write $\frac{(1+i)^2}{3-4i}$ in rectangular form.
- **2.** [4] Find all solutions to $z^4 = z$.

 Give any complex answers in exponential form.
- **3.** [3] Let $z_1 = e^{\frac{11\pi}{12}i}$ and $z_2 = e^{\frac{2\pi}{3}i}$. Find $\left(\frac{z_1}{z_2}\right)^{22}$ in rectangular form.
- **4.** [6] You are given two bases of the plane $x_1 + 2x_2 + 3x_3 = 0$:

$$\mathcal{B} = \left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix} \right\} \quad \text{and} \quad \mathcal{C} = \left\{ \begin{bmatrix} -7\\2\\1 \end{bmatrix}, \begin{bmatrix} 5\\-1\\-1 \end{bmatrix} \right\}.$$

Further, let $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Find:

- a) the change of basis matrix from \mathcal{B} to \mathcal{C} ;
- b) $[\mathbf{x}]_{\mathcal{C}}$
- c) **x**
- **5.** [4] Let $A = \begin{bmatrix} 4 & 2 & 0 \\ 1 & 3 & 0 \\ 1 & 1 & 4 \end{bmatrix}$.
 - a) Find the eigenvalues of A.
 - b) Find a basis for the eigenspace of the smallest eigenvalue.
- **6.** [4] Given $A = \begin{bmatrix} 4 & 5 \\ -1 & 2 \end{bmatrix}$, find P, C such that $A = PCP^{-1}$ where C can be written as the product of a scaling matrix and a rotation matrix. (Provide only P and C... $not P^{-1}$, S or R.)
- 7. [3] Let $\mathbb{R}^3 = H_1 \oplus H_2$, where H_1 is a plane.
 - a) What is the dimension of H_2 ?
 - b) What is the dimension of $H_1 \cap H_2$?
 - c) True or False: $H_1 \cup H_2$ is a vector space.
- 8. [3] Complete each sentence with must, might or cannot.
 - a) If W is a subspace of \mathbb{R}^n , then $(W^{\perp})^{\perp}$ ____ equal W.
 - b) The characteristic polynomial of a square matrix A
 - ____ divide the minimum polynomial of A. c) Let A be a 5×5 matrix. $Col(A)^{\perp}$ ____ equal Row(A).
- **9.** [2] Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$. The vector
 - $\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$ can uniquely be written $a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + a_3\mathbf{u}_3$. Use

the fact that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are orthogonal to find a_3 .

- 10. [3] You are given the points (0,0), (0,2), $(\ln 2,5)$. Find the coefficients for the equation $y = \beta_0 e^x + \beta_1 e^{-x}$ that best fits the data.
- 11. [4] Use the Gram-Schmidt process to find an orthonormal

basis for the vector space spanned by
$$S = \left\{ \begin{bmatrix} 0\\2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 6\\16\\8\\2 \end{bmatrix} \right\}$$

12. [4] Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -2 & 11 \\ 2 & 1 & 2 \end{bmatrix}$$
.

a) Find the QR factorization of A.

b) If
$$AB = \begin{bmatrix} 3 & 6 \\ 3 & 6 \\ 3 & 6 \end{bmatrix}$$
 then find RB without finding B .

13. [8] Define $(X,Y) = \operatorname{trace}(X^TY)$ on $M_{2\times 2}$, and let

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 2 \\ 2 & 2 \end{bmatrix} \ \text{ and } \ C = \begin{bmatrix} 2 & 0 \\ d & e \end{bmatrix}.$$

- a) What is the norm of A?
- b) Find (A, B).
- c) Find the cosine of the angle between A and B.
- d) Find the values of d and e so that C is orthogonal to both A and B.
- **14.** [6] Let $A = \begin{bmatrix} -5 & -3 \\ -3 & 3 \end{bmatrix}$.
 - a) Write the quadratic form Q(x) for A.
 - b) Write an upper triangular matrix whose quadratic form is the same as that of A.
 - c) What is the maximum value of Q given the restriction that x is a unit vector?
 - d) Find a unit vector which achieves the maximum value in part c.
 - e) A unit vector u is orthogonal to the vector from part d. Find Q(u).
- **15.** [4] Find the Jordan canonical form of $A = \begin{bmatrix} 4 & -2 & -1 \\ 0 & 2 & -1 \\ -1 & 3 & 5 \end{bmatrix}$ and the associated transition matrix.
- 16. [2] Let A be a square matrix (not necessarily symmetric). Show that the quadratic form of A equals the quadratic form of A^T.
- 17. [2] Show that a square matrix with **orthonormal** columns must have a determinant equal to 1 or -1.
- **18.** Find a singular value decomposition and the pseudoinverse

of
$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$
.

Answers

1.
$$-\frac{8}{25} + \frac{6}{25}i$$

2.
$$0, 1, e^{\frac{2\pi}{3}i}, e^{\frac{4\pi}{3}i}$$

3.
$$-i$$

4. a)
$$\begin{bmatrix} 1 & -1 \\ 1 & -2 \end{bmatrix};$$
 b)
$$\begin{bmatrix} -1 \\ -3 \end{bmatrix};$$
 c)
$$\begin{bmatrix} -8 \\ 1 \\ 2 \end{bmatrix}.$$

b)
$$\begin{bmatrix} -1 \\ -3 \end{bmatrix}$$
;

c)
$$\begin{bmatrix} -8\\1\\2 \end{bmatrix}$$

5. a) 2, 4, 5; b)
$$\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
.

8.
$$\frac{10}{21}$$

9.
$$\beta_0 = 3, \beta_1 = -2$$

10.
$$\left\{ \frac{1}{3} \begin{bmatrix} 0\\2\\-2\\1 \end{bmatrix}, \frac{1}{3} \begin{bmatrix} 1\\2\\2\\0 \end{bmatrix} \right\}$$

11. a)
$$Q = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2 \end{bmatrix}$$
; $R = \begin{bmatrix} 3 & 0 & 9 \\ 0 & 3 & -6 \\ 0 & 0 & 3 \end{bmatrix}$
b) $RB = \begin{bmatrix} 5 & 10 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}$

12. a)
$$\sqrt{15}$$
; b) 11; c) $\frac{11}{\sqrt{13}\sqrt{15}}$; d) $d = 5, e = -4$.

13. a)
$$-5x_1^2 - 6x_1x_2 + 3x^2$$

b) $\begin{bmatrix} -5 & -6\\ 0 & 3 \end{bmatrix}$
c) 4

b)
$$\begin{bmatrix} -5 & -6 \\ 0 & 3 \end{bmatrix}$$

d)
$$\frac{1}{\sqrt{10}} \begin{bmatrix} -1\\3 \end{bmatrix}$$

e) -6

14.
$$J = \begin{bmatrix} 4 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}; P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ -2 & -1 & -1 \end{bmatrix}$$

15. Since
$$x^T A x$$
 is a 1×1 matrix,

$$x^T A x = (x^T A x)^T = x^T A^T x,$$

as required.

16. If A is square and
$$A^T A = I$$
 then

$$1 = \det(I) = \det(A^T A) = \det(A^T) \det(A) = (\det(A))^2,$$
 which implies that $\det(A) = \pm 1$, as required.

17.
$$A = \frac{1}{\sqrt{5}} \begin{bmatrix} 0 & -\sqrt{5} & 0 \\ 1 & 0 & -2 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{10} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix};$$

$$A^{\dagger} = \frac{1}{10} \begin{bmatrix} 5 & 1 & 2 \\ -5 & 1 & 2 \end{bmatrix}$$