DDC Final Exam (May 2022)

1. [2] Write $\frac{(1+i)^{2}}{3-4 i}$ in rectangular form.
2. [4] Find all solutions to $z^{4}=z$.

Give any complex answers in exponential form.
3. [3] Let $z_{1}=e^{\frac{11 \pi}{12} i}$ and $z_{2}=e^{\frac{2 \pi}{3} i}$.

Find $\left(\frac{z_{1}}{z_{2}}\right)^{22}$ in rectangular form.
4. [6] You are given two bases of the plane $x_{1}+2 x_{2}+3 x_{3}=0$:
$\mathcal{B}=\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right]\right\} \quad$ and $\quad \mathcal{C}=\left\{\left[\begin{array}{c}-7 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}5 \\ -1 \\ -1\end{array}\right]\right\}$.
Further, let $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Find:
a) the change of basis matrix from \mathcal{B} to \mathcal{C};
b) $[\mathbf{x}]_{C}$
c) x
5. [4] Let $A=\left[\begin{array}{lll}4 & 2 & 0 \\ 1 & 3 & 0 \\ 1 & 1 & 4\end{array}\right]$.
a) Find the eigenvalues of A.
b) Find a basis for the eigenspace of the smallest eigenvalue.
6. [4] Given $A=\left[\begin{array}{cc}4 & 5 \\ -1 & 2\end{array}\right]$, find P, C such that $A=P C P^{-1}$ where C can be written as the product of a scaling matrix and a rotation matrix. (Provide only P and $C \ldots$ not P^{-1}, S or R.)
7. [3] Let $\mathbb{R}^{3}=H_{1} \oplus H_{2}$, where H_{1} is a plane.
a) What is the dimension of H_{2} ?
b) What is the dimension of $H_{1} \cap H_{2}$?
c) True or False: $H_{1} \cup H_{2}$ is a vector space.
8. [3] Complete each sentence with must, might or cannot.
a) If W is a subspace of \mathbb{R}^{n}, then $\left(W^{\perp}\right)^{\perp}$ \qquad equal W.
b) The characteristic polynomial of a square matrix A divide the minimum polynomial of A.
c) Let A be a 5×5 matrix. $\operatorname{Col}(A)^{\perp}$ \qquad equal $\operatorname{Row}(A)$.
9. [2] Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}4 \\ -2 \\ 1\end{array}\right]$. The vector $\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]$ can uniquely be written $a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}$. Use the fact that $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are orthogonal to find a_{3}.
10. [3] You are given the points $(0,0),(0,2),(\ln 2,5)$. Find the coefficients for the equation $y=\beta_{0} e^{x}+\beta_{1} e^{-x}$ that best fits the data.
11. [4] Use the Gram-Schmidt process to find an orthonormal basis for the vector space spanned by $\mathcal{S}=\left\{\left[\begin{array}{c}0 \\ 2 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}6 \\ 16 \\ 8 \\ 2\end{array}\right]\right\}$
12. [4] Let $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & -2 & 11 \\ 2 & 1 & 2\end{array}\right]$.
a) Find the $Q R$ factorization of A.
b) If $A B=\left[\begin{array}{ll}3 & 6 \\ 3 & 6 \\ 3 & 6\end{array}\right]$ then find $R B$ without finding B.
13. [8] Define $(X, Y)=\operatorname{trace}\left(X^{T} Y\right)$ on $M_{2 \times 2}$, and let $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right], \quad B=\left[\begin{array}{cc}-1 & 2 \\ 2 & 2\end{array}\right] \quad$ and $C=\left[\begin{array}{ll}2 & 0 \\ d & e\end{array}\right]$.
a) What is the norm of A ?
b) Find (A, B).
c) Find the cosine of the angle between A and B.
d) Find the values of d and e so that C is orthogonal to both A and B.
14. [6] Let $A=\left[\begin{array}{cc}-5 & -3 \\ -3 & 3\end{array}\right]$.
a) Write the quadratic form $Q(x)$ for A.
b) Write an upper triangular matrix whose quadratic form is the same as that of A.
c) What is the maximum value of Q given the restriction that x is a unit vector?
d) Find a unit vector which achieves the maximum value in part c.
e) A unit vector u is orthogonal to the vector from part d. Find $Q(u)$.
15. [4] Find the Jordan canonical form of $A=\left[\begin{array}{ccc}4 & -2 & -1 \\ 0 & 2 & -1 \\ -1 & 3 & 5\end{array}\right]$ and the associated transition matrix.
16. [2] Let A be a square matrix (not necessarily symmetric). Show that the quadratic form of A equals the quadratic form of A^{T}.
17. [2] Show that a square matrix with orthonormal columns must have a determinant equal to 1 or -1 .
18. Find a singular value decomposition and the pseudoinverse of $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$.

Answers

1. $-\frac{8}{25}+\frac{6}{25} i$
2. $0,1, e^{\frac{2 \pi}{3} i}, e^{\frac{4 \pi}{3} i}$
3. $-i$
4. a) $\left[\begin{array}{ll}1 & -1 \\ 1 & -2\end{array}\right]$;
b) $\left[\begin{array}{l}-1 \\ -3\end{array}\right]$;
c) $\left[\begin{array}{c}-8 \\ 1 \\ 2\end{array}\right]$.
5. a) $2,4,5$; b) $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$.
6. a) 1 ; b) 0 ; c) False
7. a) Must; b) Might; c) Cannot
8. $\frac{10}{21}$
9. $\beta_{0}=3, \beta_{1}=-2$
10. $\left\{\frac{1}{3}\left[\begin{array}{c}0 \\ 2 \\ -2 \\ 1\end{array}\right], \frac{1}{3}\left[\begin{array}{l}1 \\ 2 \\ 2 \\ 0\end{array}\right]\right\}$
11. a) $Q=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2\end{array}\right] ; R=\left[\begin{array}{ccc}3 & 0 & 9 \\ 0 & 3 & -6 \\ 0 & 0 & 3\end{array}\right]$
b) $R B=\left[\begin{array}{cc}5 & 10 \\ 1 & 2 \\ 1 & 2\end{array}\right]$
12. а) $\sqrt{15}$; b) 11 ; c) $\frac{11}{\sqrt{13} \sqrt{15}}$; d) $d=5, e=-4$.
13. a) $-5 x_{1}^{2}-6 x_{1} x_{2}+3 x^{2}$
b) $\left[\begin{array}{cc}-5 & -6 \\ 0 & 3\end{array}\right]$
c) 4
d) $\frac{1}{\sqrt{10}}\left[\begin{array}{c}-1 \\ 3\end{array}\right]$
e) -6
14. $J=\left[\begin{array}{lll}4 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3\end{array}\right] ; P=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 1 \\ -2 & -1 & -1\end{array}\right]$
15. Since $x^{T} A x$ is a 1×1 matrix,

$$
x^{T} A x=\left(x^{T} A x\right)^{T}=x^{T} A^{T} x
$$

as required.
16. If A is square and $A^{T} A=I$ then

$$
1=\operatorname{det}(I)=\operatorname{det}\left(A^{T} A\right)=\operatorname{det}\left(A^{T}\right) \operatorname{det}(A)=(\operatorname{det}(A))^{2},
$$

which implies that $\operatorname{det}(A)= \pm 1$, as required.
17. $A=\frac{1}{\sqrt{ } 5}\left[\begin{array}{ccc}0 & -\sqrt{ } 5 & 0 \\ 1 & 0 & -2 \\ 2 & 0 & 1\end{array}\right]\left[\begin{array}{cc}\sqrt{ } 10 & 0 \\ 0 & \sqrt{ } 2 \\ 0 & 0\end{array}\right] \frac{1}{\sqrt{ } 2}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$;
$A^{\dagger}=\frac{1}{10}\left[\begin{array}{ccc}5 & 1 & 2 \\ -5 & 1 & 2\end{array}\right]$

