1. (12 points) Evaluate the following limits.

Use $-\infty, \infty$ or "does not exist", wherever appropriate.
(a) $\lim _{x \rightarrow 3} \frac{\frac{3}{7}-\frac{x}{3 x-2}}{x-3}$
(b) $\lim _{x \rightarrow-3^{+}} \frac{x^{2}-9}{x^{2}+6 x+9}$
(c) $\lim _{x \rightarrow 0} \frac{x+\sin x}{\tan x}$
(d) $\lim _{x \rightarrow 0} \frac{2 \cos ^{2} x-7 \cos x+5}{\cos x-1}$
(e) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+1}-(7-2 x)}{x-2}$
(f) $\lim _{x \rightarrow \infty} \frac{2 x+\sin x}{3 x}$
2. Consider the function

$$
f(x)= \begin{cases}\frac{x+3}{x^{2}+7 x+12} & \text { if } x<-3 \\ x^{2}+3 & \text { if }-3 \leqslant x<-2 \text { and } \\ \frac{x+9}{x+3} & \text { if } x>-2\end{cases}
$$

(a) (4 points) Identify all points of discontinuity, and state whether the discontinuity is removable, jump or infinite.
(b) (2 points) Find all horizontal asymptotes of f.
3. Consider the function $f(x)=\sqrt{x^{2}-5}$.
(a) (3 points) Find $f^{\prime}(x)$ by using the limit definition of the derivative.
(b) (2 points) Find an equation of the tangent line to the curve $y=f(x)$ at $x=3$.
4. (2 points) Given the following graph of f, draw a rough sketch of a graph of its derivative f^{\prime} on the given axes.

ing. Do not simplify your answers.
(a) $y=1+2 x^{3}+\frac{4}{\sqrt[5]{x}}+6^{x}+\tan \left(\frac{7}{8} \pi\right)+9 \log _{10}(x)$
(b) $y=\sec \left(3 x^{2}+2\right) \cos \left(8 x e^{x}\right)$
(c) $y=\ln \left(\sqrt[5]{\frac{\left(2 x^{3}+1\right) \sin x}{(4 x-1)^{6}}}\right)$
(d) $\sqrt{4 x^{2}+3 y^{3}}=x+y$
(e) $y=\frac{5 x}{1+x^{\sin x}} \quad$ (Hint: what is $\frac{d}{d x}\left(x^{\sin x}\right)$
(2 points) Show that if f, g and h are differentiab
h is not zero, then $\left(\frac{f g}{h}\right)^{\prime}=\frac{f^{\prime} g h+f g^{\prime} h-f g h^{\prime}}{h^{2}}$.
7. (2 points) Find the $81^{\text {st }}$ derivative of $f(x)=\cos (10 x)$.
8. (3 points) For what value(s) of x in the interval $[0,2 \pi]$ does the curve $y=e^{x} \cos x$ have a horizontal tangent?
9. (5 points) Barbara is flying a kite in a large field. The kite is 50 feet above the ground and moves horizontally away from Barbara at a speed of $4 \mathrm{ft} / \mathrm{s}$. At what rate is the angle between the string and the horizontal changing when 100 feet of string have been let out?
10. (4 points) Show that the equation $\cos (3 x)+2016 x=0$ has exactly one solution.
11. (4 points) Find the absolute maximum and minimum values of $f(x)=\left(x^{2}+2 x\right)^{2 / 3}$ on the interval $[-3,2]$.
12. Given $f(x)=\frac{(x-1)^{2}}{(x+1)^{2}}, f^{\prime}(x)=\frac{4(x-1)}{(x+1)^{3}}$
and $f^{\prime \prime}(x)=\frac{8(2-x)}{(x+1)^{4}}$:
(a) (1 point) state the domain of f;
(b) (2 points) find the intervals on which f is increasing and decreasing;
(c) (1 point) find all local maxima and minima of f;
(d) (2 points) find the intervals on which f is concave up and concave down;
(e) (1 point) find any points of inflection of f.
13. (5 points) You are given the following information about a function f :

- f is continuous everywhere except at -1 .
- x-intercepts: $-2,1,3$
- y-intercept: -1
- $f(2)=2, f(4)=2$
- f has a vertical asymptote at $x=-1$
- $\lim _{x \rightarrow-\infty} f(x)=-3 \lim _{x \rightarrow \infty} f(x)=4$
- $f^{\prime}(x)>0$ on $(-\infty,-1) \cup(-1,2) \cup(3, \infty)$
- $f^{\prime}(x)<0$ on $(2,3)$
- $f^{\prime \prime}(x)>0$ on $(-\infty,-1) \cup(1,2) \cup(2,4)$
- $f^{\prime \prime}(x)<0$ on $\left.(-1,1) \cup 4, \infty\right)$

Use all of the above information to sketch a graph of f. Clearly label all asymptotes, local extrema and points of inflection.
14. (5 points) Find the point(s) on the curve $y=x^{2}$ that are closest to the point $(0,3)$. Justify your answer.
15. (3 points) Find the function f satisfying $f^{\prime \prime}(x)=x^{2}+\sin x-2 e^{x}+3, f^{\prime}(0)=1$ and $f(0)=4$.
16. (12 points) Evaluate the following integrals.
(a) $\int\left(\frac{\sqrt{x^{5}}}{x^{3}}-e^{x}-\cos 3\right) d x$
(b) $\int_{1}^{e} \frac{x^{2}+2 x+1}{x^{3}+x^{2}} d x$
(c) $\int\left(\sec ^{2} x\right)(1+\sin x) d x$
(d) $\int_{0}^{4}|2 x-3| d x$
17. (2 points) Evaluate $\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{1^{5}+2^{5}+3^{5}+\cdots+n^{5}}{n^{5}}\right)$ by expressing it as a definite integral.
18. Given

$$
g(x)=\int_{2}^{\sqrt{x}} \frac{t}{\ln (1+t)} d t
$$

find:
(a) (1 point) $g(4)$
(b) (2 points) $g^{\prime}(x)$
19. (2 points) Given that

$$
\begin{gathered}
\int_{1}^{3} f(x) d x=8, \quad \int_{2}^{5} f(x) d x=-3 \\
\text { and } \int_{1}^{2} f(x) d x=\int_{2}^{3} f(x) d x
\end{gathered}
$$

find:
(a) $\int_{2}^{3} f(x) d x$;
(b) $\int_{1}^{5} f(x) d x$.
20. (1 point) If $\lim _{x \rightarrow 4} f(x)=0$ and $\lim _{x \rightarrow 4} \frac{f(x)}{g(x)-\pi}=10$, then what is $\lim _{x \rightarrow 4} g(x) ?$

Answers

1. (a) $\frac{2}{49}$
(b) $-\infty$
(c) 2
(d) -3
(e) 1
(f) $\frac{2}{3}$
2. (a) $x=-4$ (infinite), $x=-3$ (jump),

$$
x=-2 \text { (removable) }
$$

(b) $y=0($ at $-\infty)$ and $y=1($ at $+\infty)$
3. (a) $f^{\prime}(x)=\frac{x}{\sqrt{x^{2}-5}}$
(b) $y-2=\frac{3}{2}(x-3)$
5. (a) $y^{\prime}=6 x^{2}-\frac{4}{5} x^{-6 / 5}+6^{x} \ln 6+\frac{9}{x \ln 10}$
(b) $y^{\prime}=6 x \sec \left(3 x^{2}+1\right) \tan \left(3 x^{2}+1\right) \cos \left(8 x e^{x}\right)-\frac{8 e^{x}(x+1) \sin \left(8 x e^{x}\right)}{\cos \left(3 x^{2}+2\right)}$
(c) $y^{\prime}=\frac{1}{5}\left(\frac{6 x^{2}}{2 x^{3}+1}+\cot x-\frac{24}{4 x-1}\right)$
(d) $y^{\prime}=-\frac{8 x-2(x+y)}{9 y^{2}-2(x+y)}$ (Simplified)
(e) $y^{\prime}=\frac{5\left(1+x^{\sin x}\right)-5 x \cdot x^{\sin x}\left(\ln x \cos x+\frac{\sin x}{x}\right)}{\left(1+x^{\sin x}\right)^{2}}$
6.

$$
\left(\frac{f g}{h}\right)^{\prime}=\frac{(f g)^{\prime} h-f g h^{\prime}}{h^{2}}=\frac{\left(f^{\prime} g+f g^{\prime}\right) h-f g h^{\prime}}{h^{2}}=\frac{f^{\prime} g h+f g^{\prime} h-f g h^{\prime}}{h^{2}}
$$

7. As $f^{(4)}(x)=10^{4} \cos 10 x$, we have that $f^{(80)}(x)=10^{80} \cos 10 x$ and so $f^{(81)}(x)=-10^{81} \sin 10 x$
8. $f^{\prime}(x)=e^{x}(\cos x-\sin x)$, so $f^{\prime}(x)=0$ if $\sin x=\cos x$, which happens at $x=\frac{\pi}{4}$ and $x=\frac{5 \pi}{4}$ in the interval $[0,2 \pi]$
9. If Barbara is x feet from the point on the ground directly beneath the kite and θ is the angle of elevation of the string, then $x=50 \cot \theta$, so $\frac{d x}{d t}=-50 \csc ^{2} \theta \frac{d \theta}{d t}$, or equivalently, $\frac{d \theta}{d t}=-\frac{1}{50} \sin ^{2} \theta \frac{d x}{d t}$
Now $\frac{d x}{d t}=4$, and when 100 feet of string have been released, $\sin \theta=\frac{50}{100}=\frac{1}{2}$, so at this instant the angle of elevation of the string is decreasing at a rate of $\frac{1}{50} \cdot\left(\frac{1}{2}\right)^{2} \cdot 4=\frac{1}{50}$ radians per second.
10. Let $f(x)=\cos (3 x)+2016 x$. This function is continuous and differentiable everywhere.

In particular, the intermediate value theorem will apply to any closed interval. Letting $x=0, f(0)=1$, and letting $x=-1, f(-1)=\cos (-3)-2016$. Clearly $-2017 \leq f(-1) \leq-2015$, so $f(-1)$ is negative. Applying the IVT on the interval $[-1,0]$, we find that f must have a root in this interval, that is, there must be a number c, with $-1<c<0$, such that $f(c)=0$, since $f(-1)<0<f(0)$.
Suppose now that there are two roots c and d, and suppose (without loss of generality) that $c<d$. Then as $f(c)=$ $f(d)=0$, and f is continuous and differentiable everywhere, we can apply Rolle's theorem on the interval $[c, d]$. We find that there must be a number r in the interval (c, d) such that $f^{\prime}(r)=0$.
However, computing f^{\prime}, we find that $f^{\prime}(x)=-3 \sin (3 x)+2016>0$ for any x. Therefore, by contradiction, there cannot be two roots f.
This shows that c is the only root of f.
11. $f^{\prime}(x)=\frac{4(x+1)}{3\left(x^{2}+2 x\right)^{1 / 3}}$. The critical numbers of f are $x=-1, x=0$ and $x=-2$

Calculating the value of f and the critical numbers and the endpoints, we find:
$f(-3)=\sqrt[3]{9}, f(-2)=0, f(-1)=1, f(0)=0$ and $f(2)=4$
Thus the absolute maximum value is 4 , attained at $x=2$, and the absolute minimum value is 0 , attained at $x=-2$ and $x=0$.
12. (a) $\mathbb{R} \backslash\{-1\}$, or $(-\infty,-1) \cup(-1, \infty)$
(b) f is increasing on $(-\infty,-1)$ and $(1, \infty)$ and decreasing on $(-1,1)$
(c) Local minimum at $x=1$, at the point $(1,0)$
(d) f is CU on $(-\infty,-1)$ and $(-1,2)$ and CD on $(2, \infty)$
(e) There is one inflection point at $\left(2, \frac{1}{9}\right)$
13.

14. The points are $\left(\pm \sqrt{\frac{5}{2}}, \frac{5}{2}\right)$ with minimum distance $\frac{\sqrt{11}}{2}$
15. $f(x)=\frac{1}{12} x^{4}-\sin x-2 e^{x}+\frac{3}{2} x^{2}+4 x+6$
16. (a) $2 \sqrt{x}-e^{x}-(\cos 3) x+C$
(b) $2-\frac{1}{e}$
(c) $\tan x+\sec x+C$
(d) $\frac{17}{2}$
17. This limit is $\int_{0}^{1} x^{5} d x=\frac{1}{6}$
18. (a) $g(4)=0$
(b) $g^{\prime}(x)=\frac{1}{2 \ln (1+\sqrt{x})}$
19. (a) $\int_{2}^{3} f(x) d x=4$
(b) $\int_{1}^{5} f(x) d x=1$
20. If $\lim _{x \rightarrow 4} g(x) \neq \pi$, then $\lim _{x \rightarrow 4} \frac{f(x)}{g(x)-\pi}=0$. Since this limit is given to be 10 , it must be that $\lim _{x \rightarrow 4} g(x)=\pi$

