1. (5 points) Given the graph of f below, evaluate each of the following. Use ∞ , $-\infty$ or "does not exist" where appropriate.

(c)
$$\lim_{x \to 7^-} \frac{1}{f(x)}$$

(d)
$$\lim_{h\to 0} \frac{f(5+h) - f(5)}{h}$$

(e) List all values of x for which f is not differentiable.

2. (10 points) Evaluate the following limits. Where appropriate, indicate ∞ or $-\infty$ or explain why the limit does not exist.

(a)
$$\lim_{x \to 5} \frac{2\sqrt{x-1} - \sqrt{x^2 - 9}}{2x^2 - 9x - 5}$$
.

(b)
$$\lim_{x \to 3} \frac{2x^2 - 9x - 3x}{x^2 - |6 - 5x|}$$

(c)
$$\lim_{x\to 0} \frac{\tan(\pi x)}{x}$$
.

(d)
$$\lim_{x \to 0^+} \sqrt{\sqrt{x} + x^2} \cos\left(\frac{\pi}{x}\right)$$
.

(e)
$$\lim_{x \to 0} \left(\frac{x - \cos x}{x^2} \right)$$
.

3. (3 points) List all horizontal asymptotes of the graph of $y = \frac{1 + e^x}{e^x - 5}$, or indicate that none exist, as appropriate.

4. (3 points) Consider the following function.

$$f(x) = \begin{cases} ax^2 - 5 & \text{if } x < 2, \\ a^2 & \text{if } x = 2, \\ x^2 + ax - 7 & \text{if } x > 2. \end{cases}$$

Is there a value of a that makes f continuous on \mathbb{R} ? Fully support your answer.

5. (5 points) (a) State the limit definition of the derivative.

(b) Find f'(x) using the limit definition of the derivative if $f(x) = \frac{1}{2x^2 + 5}$.

6. (15 points) Find $\frac{dy}{dx}$ for each of the following. Do not simplify your answers.

(a)
$$y = \sqrt[3]{x^5} - \frac{3^x}{\ln(5x)} + 6e^{7\pi} - \sec\left(\frac{8}{x}\right)$$

(b)
$$\sin(x^2y) = ye^x$$

(c)
$$y = \frac{\tan^2(x)}{(8x^2 - 7)\sqrt{5x + 1}}$$
 Use logarithmic differentiation.

(d)
$$y = [e^x(x^2 - 5) + \ln(x)]^9$$

(e)
$$y = \left\lceil \frac{\csc(x)}{3} \right\rceil^{\log_2(x)}$$

- 7. (3 points) Find an expression for $f^{(57)}(x)$ given that $f(x) = xe^x + 10x^{32}$.
- 8. (3 points) Find the points (x and y coordinates), if any, at which $f(x) = \ln(x^3 3x^2 9x + 10)$ has a horizontal tangent line.
- 9. (11 points) For the function

$$f(x) = x^4 + 4x^3$$

do the following.

- (a) Find f'(x) and f''(x). Give your answers in factored form.
- (b) Find the y-intercept and all x-intercepts.
- (c) Find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.
- (d) Find the intervals of increase and decrease.
- (e) Find the coordinates of all local maxima and minima.
- (f) Find (1) the interval(s) where the graph is concave up and (2) the interval(s) where the graph is concave down.
- (g) Find the coordinates of each inflection point.
- (h) Sketch the graph, making sure that your graph illustrates all these features.
- 10. (5 points) A line segment of length 4 rotates counter-clockwise about the origin from the positive x-axis to the positive y-axis. A triangle is formed by connecting the tip of the line segment to the x-axis perpendicularly (as in the image). What is the maximum area of the triangle?

- 11. (5 points) Find the largest and smallest values of the function $f(x) = (2x)^{2/3}(-x+10)+1$ on the interval $[-4,\frac{1}{2}]$.
- 12. (5 points) In the figure below, X is moving along the x-axis towards the right at a rate of 2cm/s. Find the rate at which |PX| + |QX|, the sum of the distances between X and the points P(0,2) and Q(5,3), is changing as X passes the point (3,0).

- 13. (3 points) Use the Mean Value Theorem to show that $\sqrt[3]{1+x} < 1 + \frac{1}{3}x$ for all x > 0. (If it helps, you may use the fact that this is equivalent to proving that $\sqrt[3]{1+x} (1+\frac{1}{3}x) < 0$ for all x > 0.)
- **14.** (3 points) The position of an object along the x-axis is given by $x(t) = \sin^2(t) \sin(t)$ for $t \ge 0$.

- (a) Find the velocity function.
- (b) Find the distance travelled by the object while $\pi \leqslant t \leqslant 2\pi$.
- 15. (12 points) Evaluate the following integrals.

(a)
$$\int \left[\frac{2}{3x^2} - \frac{4}{x} + 6^x - \pi^2 \right] dx$$

(b)
$$\int \frac{(2-\sqrt{x})^2}{2\sqrt{x}} dx$$

(c)
$$\int_{\pi/3}^{\pi/4} \frac{\tan x}{\sec x} dx$$

(d)
$$\int_{-4}^{4} (|x| - \sqrt{16 - x^2}) dx$$
 (Interpret the definite integral as areas.)

- **16.** (3 points) Given $f''(x) = \frac{4}{x^{2/3}} \frac{3}{x^{1/2}}$, f'(1) = 12 and f(1) = 15, find f(x).
- 17. (4 points) Compute $\int_0^2 (4x 3x^2) dx$ as a limit of Riemann Sums. You may find the following identities useful:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad , \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

18. (2 points) Use the Fundamental Theorem of Calculus to find the derivative f'(x) if $f(x) = \int_1^{1/x} \frac{1}{e^{1/t} + 1} dt$. Simplify your answer.

Answers

1. (a) 1 (b)
$$-\infty$$
 (c) $-\infty$ (d) -3 (e) $0, 2, 3, 4, 6, 7$
2. (a) $\frac{-3}{44}$ (b) -6 (c) π (d) 0 (e) $-\infty$
3. $y=1$ on the right, and $y=\frac{-1}{5}$ on the left

3.
$$y = 1$$
 on the right, and $y = \frac{-1}{5}$ on the left
4. No value of a can make $f(x)$ continuous on \mathbb{R} .
5. (a) $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ (b) $\lim_{h \to 0} \frac{\frac{1}{2(x+h)^2 + 5} - \frac{1}{2x^2 + 5}}{h} = \frac{-4x}{(2x^2 + 5)^2}$
6. (a) $y' = \frac{5\sqrt[3]{x^2}}{3} - \frac{3^x (\ln(3)\ln(5x) - \frac{1}{x})}{[\ln(5x)]^2} + \frac{8\sec(\frac{8}{x})\tan(\frac{8}{x})}{x^2}$ (b) $y' = \frac{ye^x - 2xy\cos(x^2y)}{x^2\cos(x^2y) - e^x}$
(c) $y' = \frac{\tan^2(x)}{(8x^2 - 7)\sqrt{5x + 1}} \left[\frac{2\sec^2(x)}{\tan(x)} - \frac{16x}{8x^2 - 7} - \frac{5}{2(5x + 1)} \right]$ (d) $y' = 9[e^x(x^2 - 5) + \ln(x)]^8 \left(e^x(x^2 + 2x - 5) + \frac{1}{x} \right)$
(e) $y' = \left[\frac{\csc(x)}{3} \right]^{\log_2(x)} \left(\frac{\ln(\csc(x)) - \ln(3)}{x \ln(2)} - \log_2(x)\cot(x) \right)$
7. $f^{(57)}(x) = xe^x + 57e^x$
8. $x = -1$ (The function is undefined at $x = 3$.)

- 8. x = -1 (The function is undefined at x = 3.)

9. (a)
$$f'(x) = 4x^2(x+3)$$
, $f''(x) = 12x(x+2)$ (b) x -intercepts: $x = -4, 0$, y -intercept: $y = 0$ (c) $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to -\infty} f(x) = \infty$ (d) increasing on $[-3, \infty)$, decreasing on $(-\infty, -3]$ (e) local min: $(-3, -27)$, no local max (f) concave up on $(-\infty, -2]$ and $[0, \infty)$, concave down on $[-2, 0]$ and $(0, 0)$ (h) See image.

- 10. 4 units 2
- 11. absolute max: 57, absolute min: 1
- 12. $\frac{2\sqrt{13}}{13}$ cm/s
- 13. **OPTION** A: If $f(x) = (1+x)^{1/3}$ then f is differentiable (and thus continuous) on $(-1,\infty)$. For x>0, the mean value theorem applied to f on [0,x] yields a real number x_0 such that $0 < x_0 < x$ and $f(x) = f(0) + f'(x_0)(x - 0) = 1 + \frac{1}{3}x(1 + x_0)^{-2/3} < 1$ $1 + \frac{1}{3}x$, since $(1 + x_0)^{-2/3} < 1$.

OR **OPTION B:** Let $f(x) = \sqrt[3]{1+x} - (1+\frac{1}{3}x)$, so $f'(x) = \frac{1}{3\sqrt[3]{(1+x)^2}} - \frac{1}{3}$. Note that f is continuous on $[0,\infty)$ and differentiable on $(0,\infty)$. The MVT states that there must exist a point $x_0 \in (0,a)$ such that $f'(x_0) = \frac{f(a) - f(0)}{a - 0} = \frac{f(a)}{a}$ for any interval (0,a), which implies that $a \cdot f'(x_0) = f(a)$ must hold for any a > 0. However, f'(x) is always negative for x>0, so $a\cdot f'(x_0)$ (and therefore f(a)) must always be less than zero when a>0, i.e. $\sqrt[3]{1+x}<1+\frac{1}{3}x$ for all x>0. 14. (a) $v(t)=2\sin(t)\cos(t)-\cos(t)$ (b) 4 units +C (b) $4\sqrt{x}-2x+\frac{\sqrt{x^3}}{3}+C$ (c) $\frac{1-\sqrt{2}}{2}$ (c)

15. (a)
$$\frac{-2}{3x} - 4 \ln|x| + \frac{6^x}{\ln(6)} - \pi^2 x + C$$

(b)
$$4\sqrt{x} - 2x + \frac{\sqrt{x^3}}{3} + C$$

(c)
$$\frac{1-\sqrt{2}}{2}$$

(d)
$$16 - 8\tau$$

16.
$$f(x) = 9\sqrt[3]{x^4} - 4\sqrt{x^3} + 6x + 4$$

15. (a)
$$\frac{-2}{3x} - 4\ln|x| + \frac{6^x}{\ln(6)} - \pi^2 x + C$$

16. $f(x) = 9\sqrt[3]{x^4} - 4\sqrt{x^3} + 6x + 4$
17. $\lim_{n \to \infty} \left(\sum_{i=1}^n \frac{2}{n} \left[4\left(\frac{2}{n}i\right) - 3\left(\frac{2}{n}i\right)^2 \right] \right) = 0$

18.
$$f'(x) = \frac{-1}{x^2(e^x+1)}$$