1. (10 points) Evaluate each of the following limits.
(a) $\lim _{x \rightarrow 2} \frac{3 x^{2}-11 x+10}{x^{3}-8}$
(b) $\lim _{x \rightarrow 0} \frac{x+\sin (5 x)}{\sin (2 x)}$
(c) $\lim _{x \rightarrow \pi / 3^{+}} \frac{1}{2-\sec x}$
(d) $\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+5 x}\right)$
(e) $\lim _{x \rightarrow 5^{+}} \frac{25-x^{2}}{|x-6|-1}$
2. (3 points) What value of c makes the following function continuous at 2 ?

$$
f(x)= \begin{cases}c^{2} x+3 c & \text { if } x<2 \\ x & \text { if } x=2 \\ c x+c^{2}+2 & \text { if } x>2\end{cases}
$$

3. (2 points) Give an equation for each horizontal and vertical asymptote of the graph of $f(x)=\frac{x+\sin x}{3 x+2}$.
4. (4 points) Use the limit definition of the derivative to find $f^{\prime}(x)$, where $f(x)=\frac{1}{3 x+2}$.
5. (12 points) Find $\frac{d y}{d x}$ for each of the following. Do not simplify your answer.
(a) $y=\frac{8}{x}-\sqrt[3]{x}+2^{x}$
(b) $y=\sqrt{\frac{x^{2}-1}{x^{2}+1}}$
(c) $y=\cos ^{3}\left(6 x^{2}\right)$
(d) $\ln (x-y)=x y-2$
6. (4 points) Let $f(x)=\frac{2^{x+3} \sqrt{9-x^{2}}}{(x+1)^{4}(6 x+3)}$. Use logarithmic differentiation to find $f^{\prime}(0)$. Simplify your answer.
7. (3 points) Use the Intermediate Value Theorem to show that the equation $x^{3}-4 x+2=0$ has at least one positive solution.
8. (3 points) Find all points P on the parabola given by the equation $y=x^{2}-2 x$ such that the line joining P and the point $(4,4)$ is tangent to the parabola.
9. (4 points) (a) State the Mean Value Theorem.
(b) Show that if $f(2)=-2$ and $f^{\prime}(x) \geq 5$ for $x \geq 2$, then $f(4) \geq 8$.
10. (4 points) Consider the curve \mathcal{C} given by the equation $x^{3}+y^{3}=8(x y+1)$. Find an equation for the tangent line to the curve \mathcal{C} at the point $(-1,1)$.
11. (6 points) A lighthouse is located on a small island 2 km away from the nearest point P on a straight shoreline and its light makes four revolutions per minute. How fast is the beam moving along the shoreline when it is 0.5 km away from P ?
12. (6 points) A right circular cylinder is inscribed in a sphere with radius 3 . Find the largest possible volume of such a cylinder.

13. (4 points) The position of a particle moving along a straight line at time $t \geq 0$ is given by $s=(t-3)^{2} e^{-t}$ where s is measured in meters and t is in seconds.
(a) When is the particle at rest?
(b) When is the particle moving in the positive direction?
14. (4 points) Find the absolute extrema of $f(x)=\frac{x+18}{\sqrt{x^{2}+36}}$ on $[0,8]$.
15. (10 points) Given

$$
f(x)=\frac{8\left(x^{2}+4\right)}{(x+2)^{2}}, \quad f^{\prime}(x)=\frac{32(x-2)}{(x+2)^{3}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{(-64)(x-4)}{(x+2)^{4}}, \text { find all: }
$$

(a) x and y intercepts.
(b) Vertical and horizontal asymptotes.
(c) Intervals of which $f(x)$ is increasing or decreasing.
(d) Local (relative) extrema.
(e) Intervals of upward and downward concavity.
(f) Inflection points.
(g) Find the coordinates of the point(s) where the graph of f intersects its horizontal asymptote.
(h) On the next page, sketch the graph of $f(x)$. Label all intercepts, asymptotes, extrema, and points of inflection.
16. (12 points) Evaluate each of the following integrals.
(a) $\int\left(e^{2}-\frac{4}{x}+\sqrt[3]{x^{5}}\right) d x$
(b) $\int \frac{\left(x^{5}+1\right)^{2}}{x^{4}} d x$
(c) $\int \sec x(\sec x+\tan x) d x$
(d) $\int_{0}^{\pi / 2}\left|\frac{1}{2}-\sin (x)\right| d x$
17. (2 points) Find the derivative with respect to x of $y=\int_{0}^{x^{2}} \frac{t}{1+t^{2}} d t$.
18. (5 points) Evaluate $\int_{0}^{2}\left(2 x^{2}+1\right) d x$ using the definition of the integral as a limit of Riemann sums. You might use the formulas $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$, and $\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.
19. (2 points) Let f be an even function such that $\int_{0}^{3} f(x) d x=216$ and $\int_{-2}^{3} f(x) d x=240$. Evaluate $\int_{-2}^{2}(x-2) f(x) d x$.

Answers:

1. (a) $\frac{1}{12}$
(b) 3
(c) $-\infty$
(d) $-\frac{5}{2}$
(e) 10
2. $c=-2$
3. One horizontal asymptote; $y=1 / 3$, and one vertical asymptote; $x=-2 / 3$.
4. $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\cdots=\lim _{h \rightarrow 0} \frac{-3}{(3 x+3 h+2)(3 x+2)}=-\frac{3}{(3 x+2)^{2}}$
5. (a) $\frac{d y}{d x}=-\frac{8}{x^{2}}-\frac{1}{3 \sqrt[3]{x^{2}}}+(\ln 2) 2^{x}$
(b) $\frac{d y}{d x}=\frac{2 x}{\left(x^{2}-1\right)^{1 / 2}\left(x^{2}+1\right)^{3 / 2}}$
(c) $\frac{d y}{d x}=-36 x \cos ^{2}\left(6 x^{2}\right) \sin \left(6 x^{2}\right)$
(d) $\frac{d y}{d x}=\frac{1-x y+y^{2}}{x^{2}-x y+1}$
6. $f^{\prime}(0)=8(\ln 2-6)$
7. Let $f(x)=x^{3}-4 x+2$. Note that $f(0)=2$ and $f(1)=-1$. Since f is continuous on $[0,1]$ and 0 is between $f(0)$ and $f(1)$, it follows by the Intermediate Value Theorem that there exists a number c in $(0,1)$ such that $f(c)=0$. The number c is a positive solution to the given equation.
8. $(2,0)$ and $(6,24)$
9. (a) If f is continuous on $[a, b]$ and differentiable on (a, b), then there exists a number c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
(b) The statement of the problem implies that f is differentiable at all $x \geq 2$, and hence f is continuous at all $x \geq 2$. Therefore, we may apply the Mean Value Theorem with f and the interval $[2,4]$ to obtain a number c in $(2,4)$ such that $f^{\prime}(c)=\frac{f(4)-(-2)}{2}$, or equivalently, $f(4)=2 f^{\prime}(c)-2$. By the hypothesis $f^{\prime}(c) \geq 5$, hence $f(4) \geq 2(5)-2=8$.
10. $y=\frac{5 x+16}{11}$
11. $17 \pi \mathrm{~km} / \mathrm{min}$
12. $12 \sqrt{3} \pi$ cubic units
13. (a) $t=3$ and $t=5$
(b) $3<t<5$
14. The minimum value is $13 / 5$ and the maximum value is $\sqrt{10}$.
15. (a) No x-intercept, y-intercepts: $(0,8)$
(b) Vertical asymptote: $x=-2$, horizontal asymptote: $y=8$
(c) Increasing on $(-\infty,-2)$ and $(2, \infty)$. Decreasing on $(-2,2)$.
(d) Local minimum: $(2,4)$. No local maximum.
(e) Concave down on $(4, \infty)$. Concave up on $(-\infty,-2),(-2,4)$.
(f) Inflection point: $(4,40 / 9)$
(g) $(0,8)$
(h)

16. (a) $e^{2} x-4 \ln x+\frac{3}{8} x^{8 / 3}+C$
(b) $\frac{x^{7}}{7}+x^{2}-\frac{1}{3 x^{3}}+C$
(c) $\tan x+\sec x+C$
(d) $\sqrt{3}-1-\frac{\pi}{12}$
17. $\frac{2 x^{3}}{1+x^{4}}$.
18. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[2\left(\frac{2 i}{n}\right)^{2}+1\right] \frac{2}{n}=\frac{22}{3}$
19. -96
