1. (10 points) Evaluate each of the following limits.

(a) 
$$\lim_{x\to 2} \frac{3x^2 - 11x + 10}{x^3 - 8}$$

(b) 
$$\lim_{x \to 0} \frac{x + \sin(5x)}{\sin(2x)}$$

(c) 
$$\lim_{x \to \pi/3^+} \frac{1}{2 - \sec x}$$

(d) 
$$\lim_{x \to \infty} \left( x - \sqrt{x^2 + 5x} \right)$$

(e) 
$$\lim_{x \to 5^+} \frac{25 - x^2}{|x - 6| - 1}$$

**2.** (3 points) What value of c makes the following function continuous at 2?

$$f(x) = \begin{cases} c^2x + 3c & \text{if } x < 2, \\ x & \text{if } x = 2, \\ cx + c^2 + 2 & \text{if } x > 2. \end{cases}$$

- **3.** (2 points) Give an equation for each horizontal and vertical asymptote of the graph of  $f(x) = \frac{x + \sin x}{3x + 2}$ .
- **4.** (4 points) Use the limit definition of the derivative to find f'(x), where  $f(x) = \frac{1}{3x+2}$ .
- 5. (12 points) Find  $\frac{dy}{dx}$  for each of the following. Do not simplify your answer.

(a) 
$$y = \frac{8}{x} - \sqrt[3]{x} + 2^x$$

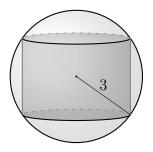
(b) 
$$y = \sqrt{\frac{x^2 - 1}{x^2 + 1}}$$

(c) 
$$y = \cos^3(6x^2)$$

(d) 
$$\ln(x - y) = xy - 2$$

- **6.** (4 points) Let  $f(x) = \frac{2^{x+3}\sqrt{9-x^2}}{(x+1)^4(6x+3)}$ . Use logarithmic differentiation to find f'(0). Simplify your answer.
- 7. (3 points) Use the Intermediate Value Theorem to show that the equation  $x^3 4x + 2 = 0$  has at least one positive solution.
- 8. (3 points) Find all points P on the parabola given by the equation  $y = x^2 2x$  such that the line joining P and the point (4,4) is tangent to the parabola.

- 9. (4 points) (a) State the Mean Value Theorem.
  - (b) Show that if f(2) = -2 and  $f'(x) \ge 5$  for  $x \ge 2$ , then  $f(4) \ge 8$ .
- 10. (4 points) Consider the curve C given by the equation  $x^3 + y^3 = 8(xy + 1)$ . Find an equation for the tangent line to the curve C at the point (-1, 1).
- 11. (6 points) A lighthouse is located on a small island 2 km away from the nearest point P on a straight shoreline and its light makes four revolutions per minute. How fast is the beam moving along the shoreline when it is 0.5 km away from P?
- 12. (6 points) A right circular cylinder is inscribed in a sphere with radius 3. Find the largest possible volume of such a cylinder.



- 13. (4 points) The position of a particle moving along a straight line at time  $t \ge 0$  is given by  $s = (t-3)^2 e^{-t}$  where s is measured in meters and t is in seconds.
  - (a) When is the particle at rest?
  - (b) When is the particle moving in the positive direction?
- **14.** (4 points) Find the absolute extrema of  $f(x) = \frac{x+18}{\sqrt{x^2+36}}$  on [0,8].
- **15.** (10 points) Given

$$f(x) = \frac{8(x^2+4)}{(x+2)^2}$$
,  $f'(x) = \frac{32(x-2)}{(x+2)^3}$  and  $f''(x) = \frac{(-64)(x-4)}{(x+2)^4}$ , find all:

- (a) x and y intercepts.
- (b) Vertical and horizontal asymptotes.
- (c) Intervals of which f(x) is increasing or decreasing.
- (d) Local (relative) extrema.
- (e) Intervals of upward and downward concavity.
- (f) Inflection points.
- (g) Find the coordinates of the point(s) where the graph of f intersects its horizontal asymptote.
- (h) On the next page, sketch the graph of f(x). Label all intercepts, asymptotes, extrema, and points of inflection.

16. (12 points) Evaluate each of the following integrals.

(a) 
$$\int \left(e^2 - \frac{4}{x} + \sqrt[3]{x^5}\right) dx$$

(b) 
$$\int \frac{(x^5+1)^2}{x^4} dx$$

(c) 
$$\int \sec x (\sec x + \tan x) \, dx$$

(d) 
$$\int_0^{\pi/2} \left| \frac{1}{2} - \sin(x) \right| dx$$

- 17. (2 points) Find the derivative with respect to x of  $y = \int_0^{x^2} \frac{t}{1+t^2} dt$ .
- 18. (5 points) Evaluate  $\int_0^2 (2x^2 + 1) dx$  using the definition of the integral as a limit of Riemann sums. You might use the formulas  $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ ,  $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$ , and  $\sum_{i=1}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2$ .
- **19.** (2 points) Let f be an even function such that  $\int_0^3 f(x) dx = 216$  and  $\int_{-2}^3 f(x) dx = 240$ . Evaluate  $\int_{-2}^2 (x-2)f(x) dx$ .

## **Answers:**

- 1. (a)  $\frac{1}{12}$ 
  - (b) 3
  - (c)  $-\infty$
  - (d)  $-\frac{5}{2}$
  - (e) 10
- **2.** c = -2
- **3.** One horizontal asymptote; y = 1/3, and one vertical asymptote; x = -2/3.

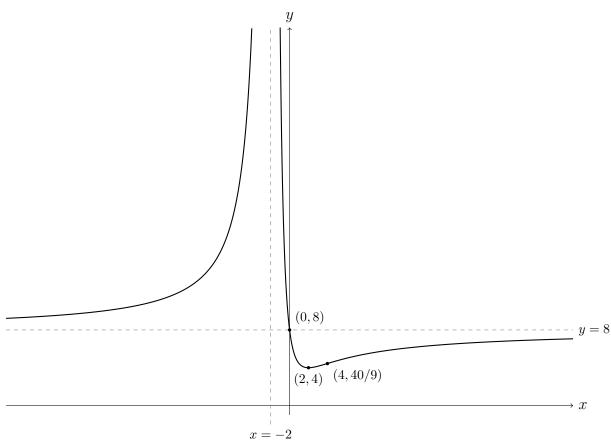
4. 
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \dots = \lim_{h \to 0} \frac{-3}{(3x+3h+2)(3x+2)} = -\frac{3}{(3x+2)^2}$$

5. (a) 
$$\frac{dy}{dx} = -\frac{8}{x^2} - \frac{1}{3\sqrt[3]{x^2}} + (\ln 2)2^x$$

(b) 
$$\frac{dy}{dx} = \frac{2x}{(x^2 - 1)^{1/2}(x^2 + 1)^{3/2}}$$

- (c)  $\frac{dy}{dx} = -36x\cos^2(6x^2)\sin(6x^2)$
- (d)  $\frac{dy}{dx} = \frac{1 xy + y^2}{x^2 xy + 1}$
- 6.  $f'(0) = 8(\ln 2 6)$
- 7. Let  $f(x) = x^3 4x + 2$ . Note that f(0) = 2 and f(1) = -1. Since f is continuous on [0, 1] and 0 is between f(0) and f(1), it follows by the Intermediate Value Theorem that there exists a number c in (0, 1) such that f(c) = 0. The number c is a positive solution to the given equation.
- 8. (2,0) and (6,24)
- **9.** (a) If f is continuous on [a, b] and differentiable on (a, b), then there exists a number c in (a, b) such that  $f'(c) = \frac{f(b) f(a)}{b a}$ .
  - (b) The statement of the problem implies that f is differentiable at all  $x \ge 2$ , and hence f is continuous at all  $x \ge 2$ . Therefore, we may apply the Mean Value Theorem with f and the interval [2,4] to obtain a number c in (2,4) such that  $f'(c) = \frac{f(4) (-2)}{2}$ , or equivalently, f(4) = 2f'(c) 2. By the hypothesis  $f'(c) \ge 5$ , hence  $f(4) \ge 2(5) 2 = 8$ .
- **10.**  $y = \frac{5x + 16}{11}$
- 11.  $17\pi \text{ km/min}$
- 12.  $12\sqrt{3}\pi$  cubic units
- **13.** (a) t = 3 and t = 5
  - (b) 3 < t < 5
- **14.** The minimum value is 13/5 and the maximum value is  $\sqrt{10}$ .
- **15.** (a) No x-intercept, y-intercepts: (0,8)
  - (b) Vertical asymptote: x = -2, horizontal asymptote: y = 8
  - (c) Increasing on  $(-\infty, -2)$  and  $(2, \infty)$ . Decreasing on (-2, 2).
  - (d) Local minimum: (2,4). No local maximum.
  - (e) Concave down on  $(4, \infty)$ . Concave up on  $(-\infty, -2)$ , (-2, 4).
  - (f) Inflection point: (4, 40/9)
  - (g) (0,8)





**16.** (a) 
$$e^2x - 4\ln x + \frac{3}{8}x^{8/3} + C$$

(b) 
$$\frac{x^7}{7} + x^2 - \frac{1}{3x^3} + C$$

(c) 
$$\tan x + \sec x + C$$

(d) 
$$\sqrt{3} - 1 - \frac{\pi}{12}$$

17. 
$$\frac{2x^3}{1+x^4}$$
.

**18.** 
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[ 2 \left( \frac{2i}{n} \right)^2 + 1 \right] \frac{2}{n} = \frac{22}{3}$$