1. (12 points) Evaluate the following limits.

(a)
$$\lim_{x \to 2^{-}} \frac{2x^3 - 4x^2}{3x^2 - 8x + 4}$$

(b)
$$\lim_{x \to 0} \frac{\sin^2(3x)}{5x\sin(2x)}$$

(c)
$$\lim_{x \to -\infty} \frac{\sqrt{4x^6 + 3x^5}}{2x^3 + \sqrt{9x^6 + 7x^5}}$$

(d)
$$\lim_{x \to 2^+} \frac{\sqrt{x-2} - (x-2)}{6 - 3x}$$

2. (4 points) Let

$$f(x) = \begin{cases} x^2 - k - 3, & x < -1\\ k + 4, & x = -1\\ k^2 + 4x - 4, & x > -1 \end{cases}$$

- (a) Find all values for k such that $\lim_{x\to -1} f(x)$ exists.
- (b) Find all values for k that make f continuous at all points.
- 3. (4 points) Let $f(x) = \frac{1}{3-2x}$. Use the limit definition of derivative to find f'(x).
- **4.** (16 points) Find $\frac{dy}{dx}$ for each of the following. Do not simplify your answer.

(a)
$$y = 16\sqrt[4]{x} + e^x - x^e + \frac{\pi}{x}$$

(b)
$$y = \frac{(8-5x^2)^4}{\tan(7x) - 9}$$

(c)
$$y = e^{\sqrt{2x^3}}$$

(d)
$$y = (\sin x)^{4\ln x}$$

5. (4 points) Write an equation of the tangent line to the curve

$$x^2y + \sin y + \frac{4}{\pi}y = 3e^x$$

at the point $(0, \pi/2)$.

- 6. (6 points) Let θ (in radians) be an acute angle in a **right** triangle and let x and y be, respectively, the lengths of the sides adjacent and opposite to θ . Suppose also that x and y vary with time. At a certain instant, x = 4 cm and increasing at 8 cm/s, while y = 3 cm and is decreasing at 2 cm/s. How fast is θ changing at that instant?
- 7. (6 points) A box with a square base and open top needs to be made. The material for the base of the box costs \$10 per square meter, while the material for the sides cost \$5 per square meter. Using only \$120 what are the dimensions of such a box with largest volume?
- **8.** (6 points) Find the absolute extrema of $f(x) = \frac{x}{2} + \frac{2}{x^2}$ on the interval [1, 4].

- **9.** (6 points) The function $s(t) = t^3 3t^2$ describes the position of a particle moving along a coordinate line, where s is in meters and $t \ge 0$ is in seconds.
 - (a) Find the velocity function.
 - (b) At what times is the particle at rest?
 - (c) When is the particle moving in the positive direction?
- 10. (10 points) Consider the following function, along with its two first derivatives.

$$f(x) = \frac{x+2}{\sqrt{x^2+2}}, \ f'(x) = \frac{2(1-x)}{(x^2+2)^{3/2}}, \ f''(x) = \frac{2(x-2)(2x+1)}{(x^2+2)^{5/2}}.$$

(It might help to know that $f(-1/2)=1,\ f(0)\approx 1.41,\ f(1)\approx 1.73,$ and $f(2)\approx 1.63.)$

- (a) Find the domain and intercepts of f.
- (b) Find the vertical and horizontal asymptotes of f (if any).
- (c) Find the intervals of increase/decrease of f.
- (d) Find the local (relative) extrema of f.
- (e) Find the intervals of concavity of f.
- (f) Find all points of inflection of f.
- (g) On the next page, sketch a graph of f.
- 11. (16 points) Evaluate each of the following integrals.

(a)
$$\int \left(\frac{2}{x} - \sqrt[3]{x^5} + 7e^x\right) dx$$

(b)
$$\int \frac{(5x-3)^2}{x} dx$$

(c)
$$\int \frac{1 - \sin \theta}{\cos^2 \theta} \ d\theta$$

(d)
$$\int_{2}^{3} \frac{x^2 + 8x + 15}{x + 3} \ dx$$

- **12.** (4 points) Given $f(x) = \int_{6}^{1/x} \frac{t}{\sqrt{1+t}} dt$, find:
 - (a) f(1/6)
 - (b) f'(x)
- 13. (4 points) Express $\int_0^5 \sin(x^2) dx$ as the limit of a Riemann sum. Do not evaluate the limit.
- 14. (2 points) Decide whether the equality below is correct or not. Justify.

$$\int \ln x \, dx = x \ln x - x + C$$

Answers:

1. (a) 2

(b)
$$9/10$$

(d)
$$-\infty$$

2. (a)
$$2, -3$$

(b)
$$-3$$

3.
$$2/(3-2x)^2$$

4. (a)
$$4x^{-3/4} + e^x - ex^{e-1} - \pi/x^2$$

$$\text{(b)} \ \ \frac{4(8-5x^2)^3(-10x)(\tan(7x)-9)-(8-5x^2)^4(7\sec^2(7x))}{(\tan(7x)-9)^2}$$

(c)
$$e^{\sqrt{2x^3}} 3x^2 / \sqrt{2x^3}$$

(d)
$$(\sin x)^{4\ln x} \left[\frac{4}{x} \ln(\sin x) + \frac{4\ln x \cos x}{\sin x} \right]$$

5.
$$y = \frac{3\pi}{4}x + \frac{\pi}{2}$$

6.
$$-32/25 \ rad/s$$

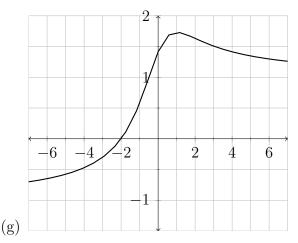
7.
$$2 \times 2 \times 2$$

8. abs. max. =
$$2.5$$
 / abs. min. = 1.5

9. (a)
$$v(t) = 3t^2 - 6t$$

(b)
$$t = 0, t = 2$$

(c) when
$$t > 2$$


10. (a) domain:
$$\mathbb{R}$$
; x-int.: $(-2,0)$; y-int.: $(0,\sqrt{2})$

- (b) h.a.: y = -1, y = 1; v.a.: none
- (c) inc.: $(-\infty, 1)$; dec.: $(1, \infty)$

(d) local max. at
$$x = 1$$
; no local min.

(e) conc. up:
$$(-\infty, -1/2)$$
, $(2, \infty)$; conc. down: $(-1/2, 2)$

(f) inflection pts at
$$x = -1/2$$
, $x = 2$

11. (a)
$$2 \ln |x| - \frac{3}{8}x^{8/3} + 7e^x + C$$

(b)
$$\frac{25}{2}x^2 - 30x + 9\ln|x| + C$$

(c)
$$\tan \theta - \sec \theta + C$$

(d)
$$15/2$$

(b)
$$\frac{1/x}{\sqrt{1+1/x}} \frac{-1}{x^2}$$

13.
$$\lim_{n\to\infty} \sum_{i=1}^{n} \sin(25i^2/n^2) 5/n$$

14. Correct. (Because
$$[x \ln x - x + C]' = \cdots = \ln x$$
.)