1. (6 points) Given the graph of f below, evaluate each of the following. Use $\infty,-\infty$ or "does not exist" where appropriate.
(a) $\lim _{x \rightarrow-2} f(x)$
(b) $\lim _{x \rightarrow 0} f(x)$
(c) $f^{\prime}(4)$
(d) $\lim _{x \rightarrow \infty} f(x)$
(e) $\lim _{h \rightarrow 0} \frac{f(6+h)-f(6)}{h}$
(f) $\lim _{x \rightarrow 2}[f(x)-2]^{2}$

2. (10 points) Evaluate each of the following limits.
(a) $\lim _{x \rightarrow 5} \frac{50-2 x^{2}}{2 x^{2}-9 x-5}$
(b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{6}-9 x}}{x^{3}}$
(c) $\lim _{x \rightarrow \infty}\left(e^{x}-e^{2 x}\right)$
(d) $\lim _{x \rightarrow 3^{+}} \frac{|6-2 x|}{\sqrt{x-3}}$
(e) $\lim _{x \rightarrow 0} \frac{6 x}{\sin 3 x \cos 4 x}$
3. (5 points) Let

$$
f(x)= \begin{cases}\frac{x^{2}-4}{x^{2}-x-6} & \text { if } x \leqslant-1, \\ \frac{1}{4} x+1 & \text { if }-1<x<5, \text { and } \\ \frac{1}{x^{2}-10 x-24} & \text { if } x \geqslant 5\end{cases}
$$

Find the numbers at which f is not continuous. For each discontinuity that you find, specify whether the discontinuity is removable, jump or infinite.
4. (4 points) Use the limit definition of the derivative to find $f^{\prime}(x)$, where $f(x)=\frac{1}{x^{2}+1}$.
5. (15 points) Find $\frac{d y}{d x}$ for each of the following.
(a) $y=5^{\cot x}+\sec \left(4 x^{2}\right)-2 e^{\pi+1}$
(b) $y=\tan ^{3}\left(x e^{x}\right)$
(c) $y=\sqrt{\frac{x^{3} \sin (2 x)}{(x+1)^{5}}}$
(d) $e^{x y}-3 x^{2}-3 y^{2}=2$
(e) $y=\left(\frac{2 x-3}{\cos x}\right)^{x}$
6. Consider the curve defined by $x y^{2}-x^{3} y=6$.
(a) (2 points) Show that $\frac{d y}{d x}=\frac{3 x^{2} y-y^{2}}{2 x y-x^{3}}$.
(b) (3 points) Find all points on the curve whose x-coordinate is 1 , and write an equation of the tangent line at each of these points.
7. Consider the function defined by $f(x)=x^{3}-7 x-10$.
(a) (1 point) Use the Intermediate Value Theorem to show that a zero exists on the interval $[-1,4]$.
(b) (2 points) Find the number in $(-1,4)$ that satisfies the conclusion of the Mean Value Theorem.
(c) (1 point) Use Rolle's Theorem to show that there is a number c in $(-1,3)$ such that $f^{\prime}(c)=0$.
8. (5 points) A conical tank, with its vertex down, has a diameter of 8 m and a depth of 16 m . Water flows into the tank at a rate of $5 \mathrm{~m}^{3}$ per minute. Find the rate at which the water is rising when the water level is 10 m deep. (The volume of a cone is $V=\frac{1}{3} \pi r^{2} h$)
9. (4 points) Find the absolute extrema of $f(x)=\frac{\ln x}{\sqrt{x}}$ on $\left[1, e^{4}\right]$.
10. (10 points) Given
$f(x)=\frac{(2 x+3)(x-3)^{2}}{x^{3}}=\frac{2 x^{3}-9 x^{2}+27}{x^{3}}, \quad f^{\prime}(x)=\frac{9\left(x^{2}-9\right)}{x^{4}} \quad$ and $\quad f^{\prime \prime}(x)=\frac{18\left(18-x^{2}\right)}{x^{5}}$, find all:
(a) x and y intercepts.
(b) Vertical and horizontal asymptotes.
(c) Intervals of which $f(x)$ is increasing or decreasing.
(d) Local (relative) extrema.
(e) Intervals of upward and downward concavity.
(f) Inflection points.
(g) Find the coordinates of the point(s) where the graph of f intersects its horizontal asymptote.
(h) Sketch the graph of $f(x)$. Label all intercepts, asymptotes, extrema, and points of inflection.

The fact that $f(3 \sqrt{2}) \approx 0.23$ and $f(-3 \sqrt{2}) \approx 3.77$ may also be useful.
11. (4 points) The graph below is of a function f^{\prime} on $(0,6)$.

(a) Give the interval(s) where f is decreasing.
(b) Give the interval(s) where the graph of f is concave up.
(c) Give the x-coordinate(s) of the local (relative) maximum of f.
(d) Give the x-coordinate(s) of the point(s) of inflection of the graph of f.
12. (5 points) A closed cylindrical tank with a flat bottom and an inverted hemispherical top is to have a volume of $13 \pi \mathrm{~m}^{3}$. Find the radius that will minimize the surface area of the tank. (The volume of a hemisphere of radius r is $\frac{2}{3} \pi r^{3}$ and its surface area is $2 \pi r^{2}$.)

13. (3 points) Find $f(t)$ if $f^{\prime \prime}(t)=e^{t}-3 \cos (t)+6 t, f^{\prime}(0)=3$ and $f(0)=1$.
14. (12 points) Evaluate each of the following integrals.
(a) $\int\left(6 e^{x}-\sqrt[3]{x^{7}}+\pi^{5}\right) d x$
(b) $\int \frac{(x-1)^{2}}{x^{3}} d x$
(c) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin ^{2} x+\cos x}{\sin ^{2} x} d x$
(d) $\int_{0}^{5}\left|x^{2}-9\right| d x$
15. (2 points) Find the derivative with respect to x of $y=\int_{\sqrt{x}}^{1} \frac{t}{t^{2}+1} d t$.
16. (a) (1 point) Express the integral $\int_{0}^{3}\left(x^{2}+3\right) d x$ as a limit of Riemann sums.
(b) (3 points) Use summation formulæ and basic properties of limits to evaluate the integral from Part a.
Note that $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
No marks if you use the Fundamental Theorem of Calculus to evaluate the integral.
17. (1 point) Evaluate the integral $\int_{-2}^{0} \sqrt{4-x^{2}} d x$ by interpreting it in terms of area.
18. (1 point) If $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$, must the graph of f have a horizontal asymptote? Justify your answer.

Answers

1.(a)0
(b) ∞
(c)DNE
(d) 0
(e) -1
(f) 1
2.(a) $-\frac{20}{11}$
(b) -2
(c) $-\infty$
(d) 0
(e) 2
3.-2(removable), 5(jump), 12(infinite)
4. $\frac{-2 x}{\left(x^{2}+1\right)^{2}}$
5.(a) $5^{\cot x} \ln 5\left(-\csc ^{2} x\right)+8 x \sec \left(4 x^{2}\right) \tan \left(4 x^{2}\right)$
(b) $3 e^{x} \tan ^{2}\left(x e^{x}\right) \sec ^{2}\left(x e^{x}\right)(x+1)$
(c) $\frac{1}{2} \sqrt{\frac{x^{3} \sin (2 x)}{(x+1)^{5}}}\left(\frac{3}{x}+2 \cot (2 x)-\frac{5}{x+1}\right)$
(d) $\frac{6 x-y y^{x y}}{x e^{x y}-6 y}$
(e) $\left(\frac{2 x-3}{\cos x}\right)^{x}\left[x\left(\frac{2}{2 x-3}+\tan x\right)+\ln \left(\frac{2 x-3}{\cos x}\right)\right] \quad 6 .(\mathrm{b})(1,3): y=3 ;(1,-2): y=2 x-4$
7. (a) $f(x)$ is cont. on $[-1,4], f(-1)=-4<0 \& f(4)=26>0 \quad$ (b) $\sqrt{\frac{13}{3}}$
(c) $f(x)$ is cont. \& diff'able on $(-1,3), f(-1)=-4=f(3) \quad 8 . \frac{4}{5 \pi} \mathrm{~m} / \mathrm{min} \quad$ 9.Min:(1,0); Max: $\left(e^{2}, \frac{2}{e}\right)$
10.

11.(a) $(0,2),(4,6)$
(b) $(0,3)$
(c) $x=4$
(d) $x=3$
$12.3^{1 / 3} \mathrm{~m}$
13. $f(t)=e^{t}+3 \cos t+t^{3}+2 t-3$
14.(a) $6 e^{x}-\frac{3}{10} x^{10 / 3}+\pi^{5} x+C$
(b) $\ln |x|+\frac{2}{x}-\frac{1}{2 x^{2}}+C$
(c) $\frac{\pi}{4}-1+\sqrt{2}$
(d) $\frac{98}{3}$
15. $-\frac{1}{2(x+1)}$
16.(a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{3 i}{n}\right) \frac{3}{n}$
(b) 18
17. π
18. No. Consider $f(x)=\sqrt{x}$, which has no horizontal asymptote, but for which $\lim _{x \rightarrow \infty} \frac{1}{2 \sqrt{x}}=0$.

