1. a. The numerator and denominator each vanish as $x \to -2$, and factorising by inspection gives $x^2 + 2x = x(x+2)$ and $x^2 + 6x + 8 = (x+4)(x+2)$, so

$$\lim_{x \to -2} \frac{x^2 + 2x}{x^2 + 6x + 8} = \lim_{x \to -2} \frac{x}{x + 4} = -1.$$

b. If $x \to -2$ and x < -2, then $x + 1 \to -1$, $4 - x^2 \to 0$ and $4 - x^2 < 0$, so $\lim_{\substack{x \to -2 \\ x < -2}} \frac{x + 1}{4 - x^2} = \infty$.

c. Extracting dominant powers gives $\lim_{x\to -\infty}\frac{\sqrt{2x^2+1}}{3x-5}=\lim_{x\to -\infty}\frac{-\sqrt{2+x^{-2}}}{3-5x^{-1}}=-\tfrac{1}{3}\sqrt{2x^2+1}$

d. If x > 0, then

$$\frac{1}{x} - \frac{1}{4} = \frac{4 - x}{4x} = \frac{(2 - \sqrt{x})(2 + \sqrt{x})}{4x}, \text{ and so } \lim_{x \to 4} \frac{1/x - 1/4}{2 - \sqrt{x}} = \lim_{x \to 4} \frac{2 + \sqrt{x}}{4x} = \frac{1}{4}.$$

e. Since $\tan x - \sin(2x) = \sin x \sec x - 2\sin x \cos x = (\sin x)(\sec x - 2\cos x)$, it follows that

$$\lim_{x\to 0} \frac{\tan x - \sin(2x)}{x} \lim_{x\to 0} \left\{ \frac{\sin x}{x} \cdot (\sec x - 2\cos x) \right\} = 1(1-2) = -1.$$

2. As f(x) = 1/x if x < -1 and elsewhere f is a piecewise polynomial function, f is continuous on $(-\infty, -1)$, [-1, 2) and $[2, \infty)$, so f is continuous on $\mathbb R$ if f is continuous at -1 and at 2. Now

$$\lim_{\begin{subarray}{c} x \to -1 \\ x < -1 \end{subarray}} f(x) = -1, & \lim_{\begin{subarray}{c} x \to -1 \\ x > -1 \end{subarray}} f(x) = f(-1) = -\alpha + b, \\ \lim_{\begin{subarray}{c} x \to 2 \\ x < 2 \end{subarray}} f(x) = 2\alpha + b & \text{and} & \lim_{\begin{subarray}{c} x \to 2 \\ x < 2 \end{subarray}} f(x) = f(2) = 2.$$

Hence, f is continuous at -1 and at 2 if, and only if, a - b = 1 and 2a + b = 2, *i.e.*, 3a = 3, or a = 1, and b = 0. Therefore, f is continuous on \mathbb{R} if, and only if, a = 1 and b = 0.

3. A portion of the graph of such a function, with domain

$$\{-5\} \cup \left[-\frac{9}{2}, -4\right) \cup \left(-4, -\frac{7}{2}\right] \cup \left\{-\frac{1}{2}\right\} \cup \left[\frac{1}{2}, 1\right) \cup \left(1, \frac{3}{2}\right] \cup \left[4, \infty\right),$$

is sketched below.

4. If $y = \sqrt{x^2 + 1}$ and $y' = \sqrt{x'^2 + 1}$, then $y' - y = \frac{y'^2 - y^2}{y' + y} = \frac{(x' - x)(x' + x)}{y' + y}$. Hence, $\frac{dy}{dx} = \lim_{x' \to x} \frac{y' - y}{x' - x} = \lim_{x' \to x} \frac{x' + x}{y' + y} = \frac{2x}{2y} = \frac{x}{\sqrt{x^2 + 1}}.$

This justifies, in this case, the tricks used in $\frac{d}{dx}(x^2+1)^{1/2} = \frac{1}{2}(x^2+1)^{-1/2}(2x) = \frac{x}{\sqrt{x^2+1}}$.

5. By inspection,
$$\lim_{h\to 0}\frac{\sin\left(\frac{1}{2}\pi+h\right)-1}{h}=\frac{d}{dx}\left\{\sin x\right\}\Bigg|_{x=\frac{1}{2}\pi}=\cos\left(\frac{1}{2}\pi\right)=0.$$

6. The tangent line at (x, y) to the curve defined by $y = 2x^2 + 1$ contains (1, -5) if, and only if,

$$\frac{y+5}{x-1} = \frac{dy}{dx}$$
, i.e., $\frac{2x^2+6}{x-1} = 4x$, or $x^2+3 = 2x^2-2x$;

equivalently, $0 = x^2 - 2x - 3 = (x + 1)(x - 3)$. Therefore, the tangent lines to the parabola at the points (-1,3) and (3,19)—and no other points—contain (1,-5).

7. If $x^2 + 2xy + 4y^2 = 13$, then implicit differentiation gives

$$\frac{\mathrm{d}y}{\mathrm{d}x}\bigg|_{\substack{x=-1\\y=2}} = -\frac{x+y}{x+4y}\bigg|_{\substack{x=-1\\y=2}} = -\frac{-1+2}{-1+8} = -\frac{1}{7},$$

so the tangent line to the curve at the point (-1,2) is defined by x + 7y = 13.

8. a. If
$$y = \cos^2(x)\sec(x^2) + \log_3(x) + \pi^e = \frac{\cos^2(x)}{\cos(x^2)} + \frac{\log x}{\log 3} + \pi^e$$
, then

$$\frac{dy}{dx} = -\frac{\sin(2x)}{\cos(x^2)} + \frac{2x\cos^2(x)\sin(x^2)}{\cos^2(x^2)} + \frac{1}{x\log 3}.$$

$$\text{b. If } y = \frac{\tan^2(e^x - 3)}{\log(3x^2 + 5)}, \\ \text{then } \frac{dy}{dx} = \frac{2e^x\tan(e^x - 3)\sec^2(e^x - 3)}{\log(3x^2 + 5)} - \frac{6x\tan^2(e^x - 3)}{(3x^2 + 5)\left(\log(3x^2 + 5)\right)^2}.$$

c. If
$$y = \left(\log(\cos(e^{3x+7}))\right)^6$$
, then $\frac{dy}{dx} = -18e^{3x+7}\left(\log(\cos(e^{3x+7}))\right)^5\tan(e^{3x+7})$.

d. If $y = (\cot x)^{\sin x}$, then logarithmic differentiation gives

$$\frac{dy}{dx} = y \frac{d}{dx} \{ \log y \} = -(\cot x)^{\sin x} \{ (\cos x) \log(\tan x) + \sec x \}.$$

e. If $y = \sqrt[4]{\frac{x^5 \sin^2(x)}{(x-5)^6}}$, then logarithmic differentiation gives

$$\frac{dy}{dx} = y \frac{d}{dx} \{ \log |y| \} = \frac{1}{4} \sqrt[4]{\frac{x^5 \sin^2(x)}{(x-5)^6}} \left\{ \frac{5}{x} + 2 \cot(x) + \frac{6}{5-x} \right\}$$

9. Since $f(x) = x^3 + 33x - 8$ is a polynomial in x, the Intermediate Value Theorem and the Mean Value Theorem apply to f on any closed interval of positive length. Now

$$f(0) = -8 < 0$$
 and $f(1) = 26 > 0$,

so the Intermediate Value Theorem implies that there is a real number ξ such that $0<\xi<1$ and $f(\xi)=0$. If $\xi'\neq\xi$, then the Mean Value Theorem implies that there is a real number η between ξ and ξ' such that

$$f(\xi') - f(\xi) = f'(\eta)(\xi' - \xi),$$
 or $f(\xi') = (3\eta^2 + 33)(\xi' - \xi),$

and hence $|f(\xi')| \ge 33|\xi' - \xi| > 0$. Therefore, ξ is the unique real zero of f.

10. If

$$f(x) = \frac{2}{x^2} - \frac{9}{x^4} = \frac{2x^2 - 9}{x^4}$$
, then $f'(x) = -\frac{4}{x^3} + \frac{36}{x^5} = \frac{4(9 - x^2)}{x^5}$.

a. Since f is continuous at every real number besides zero, $\lim_{x\to 0} f(x) = -\infty$ and $\lim_{x\to \pm \infty} f(x) = 0$, the asymptotes of the graph of f are defined by x=0 and y=0.

b. Since f'(x) > 0 if x < -3 or 0 < x < 3, and f'(x), 0 if -3 < x < 0 or 3 < x, f is increasing on the intervals $(-\infty, -3]$ and (0,3] (**NOT on the union** $(-\infty, -3] \cup (0,3]$; for example, -4 < 1 but f(-4) > 0 > f(1)), and decreasing on the intervals [-3,0) and $[3,\infty)$.

c. From Parts a and b, it follows that $f(\pm 3) = \frac{1}{9}$ is the (local and global) maximum value of f, and that f has no (local or global) minimum values.

11. Since $y = x(x-5)^{2/3}$ is a continuous function of x on \mathbb{R} , and $y = x^{5/3}(1-5x^{-1})^{2/3}$ if $x \neq 0$, the curve has no vertical, horizontal or oblique asymptotes, nor any global extrema. The axis intercepts of the curve are (0,0) and (5,0). Now

$$\frac{dy}{dx} = \frac{5(x-3)}{3(x-5)^{1/3}}, \text{ so } \frac{dy}{dx} > 0 \text{ if } x < 3 \text{ or } 5 < x, \text{ and } \frac{dy}{dx} < 0 \text{ if } 3 < x < 5.$$

Hence, y is increasing on $(-\infty,3]$ and on $[5,\infty)$, decreasing on [3,5], and has a local maximum at $(3,3\sqrt[4]{4})$ and a local minimum at (5,0). Next,

$$\frac{d^2y}{dx^2} = \frac{10(x-6)}{9(x-5)^{4/3}}, \quad \text{so} \qquad \frac{d^2y}{dx^2} > 0 \ \ \text{if} \ \ 6 < x, \quad \text{and} \quad \frac{d^2y}{dx^2} < 0 \ \ \text{if} \ \ x < 5 \ \text{or} \ 5 < x < 6.$$

So the curve is concave up on $[6,\infty)$, concave down on $(-\infty,5]$ and on $[5,\infty)$, and has a point of inflection at (6,6). In the sketch (which is not to scale—the x-axis is dilated by a factor of 2), the points of interest are emphasised.

- **12.** If $f(t) = 4t^3 5t^2 8t + 3$, then $f'(t) = 12t^2 10t 8 = 2(2t+1)(3t-4)$, so the critical number of f in (-1,1) is $-\frac{1}{2}$. Since f(-1) = 2, $f\left(-\frac{1}{2}\right) = \frac{21}{4}$ and f(1) = -6, the largest and smallest values of f on [-1,1] are, respectively, $\frac{21}{4}$ and -6.
- 13. If x is the distance between M and P, and y is the distance between P and C (each measured in kilometres), then $0 \leqslant x \leqslant 4$ and x+y=4, so $\frac{dy}{dx}=-1$. The total length of the cable is (by Pythagoras' formula) $\ell=2\sqrt{x^2+3^2}+y$. By First Derivative Test (or Snellius' principle), the minimum value of ℓ occurs where

$$\frac{2x}{\sqrt{x^2 + 3^2}} = 1$$
, i.e., $4x^2 = x^2 + 3^2$, or $x = \sqrt{3}$ (since $x \ge 0$).

Therefore, P should be $\sqrt{3}$ kilometres east of M to minimise the total length of the cable.

- **14.** If $a=\frac{dv}{dt}=6t+4$ and $v_0=-6$, then by inspection, $v=3t^2+4t-6$. Likewise, since $v=\frac{ds}{dt}$, if the initial position of the particle is $s_0=9$ then $s=t^3+2t^2-6t+9$.
- **15.** If [0,2] is divided into k subintervals of equal length, then the corresponding right endpoint Riemann sum of $2x^3 1$ is

$$\begin{split} \mathcal{R}_k &= \frac{2}{k} \sum_{j=1}^k \left\{ 2 \Big(\frac{2}{k} \mathfrak{j}\Big)^3 - 1 \right\} = \frac{2}{k} \left\{ \frac{16}{k^3} \sum_{j=1}^k \mathfrak{j}^3 - k \right\} = 2 \left\{ \frac{16}{k^4} \cdot \frac{1}{4} k^2 (k+1)^2 - 1 \right\} \\ &= 2 \Big\{ 4 \Big(1 + \frac{1}{k} \Big)^2 - 1 \Big\}. \end{split}$$

Therefore,
$$\int_{0}^{2} (2x^3 - 1) dx = \lim_{k \to \infty} \mathcal{R}_k = 2(4 - 1) = 6.$$

16. a. Integrating by inspection (and noting that $3^x = e^{(\log 3)x}$) gives

$$\int (e^x + x^3 + 3^x + e^3) dx = e^x + \frac{1}{4}x^4 + 3^x(\log 3)^{-1} + e^3x + a.$$

b. Since $(2x + \sqrt{x})^2 = 4x^2 + 4x\sqrt{x} + x$, it follows that

$$\int \frac{(2x + \sqrt{x})^2}{x^3} dx = \int (4x^{-1} + 4x^{-3/2} + x^{-2}) dx = 4\log x - 8x^{-1/2} - x^{-1} + b.$$

c. Since $\sec \vartheta \tan \vartheta \csc \vartheta = \sec^2 \vartheta$, it follows that

$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \sec \vartheta \tan \vartheta \csc \vartheta d\vartheta = \tan \vartheta \Big|_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} = \sqrt{3} - \frac{1}{3}\sqrt{3} = \frac{2}{3}\sqrt{3}.$$

d. Below is a sketch of the graph of y = |2x - 1| on [-3, 2] (not to scale).

The definite integral is the sum of the areas of the shaded triangles, *i.e.*,

$$\int_{-3}^{2} |2x - 1| \, dx = \frac{49}{4} + \frac{9}{4} = \frac{29}{2}.$$

17. The expression in the limit is a right endpoint Riemann sum of $\sqrt[3]{x}$, with [0,1] divided into n subintervals of equal length, *i.e.*,

$$\lim_{n \to \infty} \left\{ \frac{1}{n} \sum_{v=1}^{n} \sqrt[3]{\frac{v}{n}} \right\} = \int_{0}^{1} \sqrt[3]{x} \, dx = \frac{3}{4} x^{4/3} \Big|_{0}^{1} = \frac{3}{4}.$$

18. By the interval additivity of the definite integral and the Fundamental Theorem of Calculus,

$$\frac{d}{dx}\int_{\log x}^{x}te^{t} dt = \frac{d}{dx}\int_{0}^{x}te^{t} dt - \frac{d}{dx}\int_{0}^{\log x}te^{t} dt = xe^{x} - \frac{(\log x)e^{\log x}}{x} = xe^{x} - \log x.$$

Therefore,

$$\frac{d^2}{dx^2} \int_{\log x}^{x} te^t dt = \frac{d}{dx} \left\{ xe^x - \log x \right\} = e^x (x+1) - x^{-1},$$

where the last expression is interpreted only for positive values of x.

19. a. If $x \neq 2$, then

$$y = \frac{x^3 - 4x}{x - 2} = \frac{x(x - 2)(x + 2)}{x - 2} = x(x + 2),$$
 and hence $\lim_{x \to 2} y = 8.$

So the curve has a hole, not a vertical asymptote, where x = 2, and the statement is false.

- b. The absolute value function is continuous but not differentiable at 0, so the statement is false.
- c. Since $\frac{d}{dx} \{x^2 \log x\} = 2x \log x + x^2 \cdot x^{-1} = 2x \log x + x$, the statement is true.
- d. Since $\sqrt{\tan x}$ is defined if $x=\pi$, the definite integral of $\sqrt{\tan x}$ on $[\pi,\pi]$ is zero, so the statement is true.