1. a. The numerator and denominator each vanish as $x \rightarrow-2$, and factorising by inspection give $x^{2}+2 x=x(x+2)$ and $x^{2}+6 x+8=(x+4)(x+2)$, so

$$
\lim _{x \rightarrow-2} \frac{x^{2}+2 x}{x^{2}+6 x+8}=\lim _{x \rightarrow-2} \frac{x}{x+4}=-1
$$

b. If $x \rightarrow-2$ and $x<-2$, then $x+1 \rightarrow-1,4-x^{2} \rightarrow 0$ and $4-x^{2}<0$, so $\lim _{\substack{x \rightarrow-2 \\ x<-2}} \frac{x+1}{4-x^{2}}=\infty$.
c. Extracting dominant powers gives $\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x^{2}+1}}{3 x-5}=\lim _{x \rightarrow-\infty} \frac{-\sqrt{2+x^{-2}}}{3-5 x^{-1}}=-\frac{1}{3} \sqrt{ } 2$.
d. If $x>0$, then

$$
\frac{1}{x}-\frac{1}{4}=\frac{4-x}{4 x}=\frac{(2-\sqrt{ } x)(2+\sqrt{ } x)}{4 x}, \quad \text { and so } \quad \lim _{x \rightarrow 4} \frac{1 / x-1 / 4}{2-\sqrt{ } x}=\lim _{x \rightarrow 4} \frac{2+\sqrt{ } x}{4 x}=\frac{1}{4}
$$

e. Since $\tan x-\sin (2 x)=\sin x \sec x-2 \sin x \cos x=(\sin x)(\sec x-2 \cos x)$, it follows that

$$
\lim _{x \rightarrow 0} \frac{\tan x-\sin (2 x)}{x} \lim _{x \rightarrow 0}\left\{\frac{\sin x}{x} \cdot(\sec x-2 \cos x)\right\}=1(1-2)=-1
$$

2. As $f(x)=1 / x$ if $x<-1$ and elsewhere f is a piecewise polynomial function, f is continuous on $(-\infty,-1),[-1,2)$ and $[2, \infty)$, so f is continuous on \mathbb{R} if f is continuous at -1 and at 2 . Now

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow-1 \\
x<-1}} f(x)=-1, \quad \lim _{\substack{x \rightarrow-1 \\
x>-1}} f(x)=f(-1)=-a+b \\
& \lim _{\substack{x \rightarrow 2 \\
x<2}} f(x)=2 a+b \quad \text { and } \quad \lim _{\substack{x \rightarrow 2 \\
x<2}} f(x)=f(2)=2 .
\end{aligned}
$$

Hence, f is continuous at -1 and at 2 if, and only if, $a-b=1$ and $2 a+b=2$, i.e., $3 a=3$, or $a=1$, and $b=0$. Therefore, f is continuous on \mathbb{R} if, and only if, $a=1$ and $b=0$.
3. A portion of the graph of such a function, with domain

$$
\{-5\} \cup\left[-\frac{9}{2},-4\right) \cup\left(-4,-\frac{7}{2}\right] \cup\left\{-\frac{1}{2}\right\} \cup\left[\frac{1}{2}, 1\right) \cup\left(1, \frac{3}{2}\right] \cup[4, \infty),
$$

is sketched below.

4. If $y=\sqrt{x^{2}+1}$ and $y^{\prime}=\sqrt{x^{\prime 2}+1}$, then $y^{\prime}-y=\frac{y^{\prime 2}-y^{2}}{y^{\prime}+y}=\frac{\left(x^{\prime}-x\right)\left(x^{\prime}+x\right)}{y^{\prime}+y}$. Hence,

$$
\frac{d y}{d x}=\lim _{x^{\prime} \rightarrow x} \frac{y^{\prime}-y}{x^{\prime}-x}=\lim _{x^{\prime} \rightarrow x} \frac{x^{\prime}+x}{y^{\prime}+y}=\frac{2 x}{2 y}=\frac{x}{\sqrt{x^{2}+1}}
$$

This justifies, in this case, the tricks used in $\frac{d}{d x}\left(x^{2}+1\right)^{1 / 2}=\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}(2 x)=\frac{x}{\sqrt{x^{2}+1}}$.
5. By inspection, $\lim _{h \rightarrow 0} \frac{\sin \left(\frac{1}{2} \pi+h\right)-1}{h}=\left.\frac{d}{d x}\{\sin x\}\right|_{x=\frac{1}{2} \pi}=\cos \left(\frac{1}{2} \pi\right)=0$.
6. The tangent line at (x, y) to the curve defined by $y=2 x^{2}+1$ contains $(1,-5)$ if, and only if,

$$
\frac{y+5}{x-1}=\frac{d y}{d x}, \quad \text { i.e., } \quad \frac{2 x^{2}+6}{x-1}=4 x, \quad \text { or } \quad x^{2}+3=2 x^{2}-2 x
$$

equivalently, $0=x^{2}-2 x-3=(x+1)(x-3)$. Therefore, the tangent lines to the parabola at the points $(-1,3)$ and $(3,19)$-and no other points-contain $(1,-5)$.
7. If $x^{2}+2 x y+4 y^{2}=13$, then implicit differentiation gives

$$
\left.\frac{d y}{d x}\right|_{\substack{x=-1 \\ y=2}}=-\left.\frac{x+y}{x+4 y}\right|_{\substack{x=-1 \\ y=2}}=-\frac{-1+2}{-1+8}=-\frac{1}{7}
$$

so the tangent line to the curve at the point $(-1,2)$ is defined by $x+7 y=13$.
8. a. If $y=\cos ^{2}(x) \sec \left(x^{2}\right)+\log _{3}(x)+\pi^{e}=\frac{\cos ^{2}(x)}{\cos \left(x^{2}\right)}+\frac{\log x}{\log 3}+\pi^{e}$, then

$$
\frac{d y}{d x}=-\frac{\sin (2 x)}{\cos \left(x^{2}\right)}+\frac{2 x \cos ^{2}(x) \sin \left(x^{2}\right)}{\cos ^{2}\left(x^{2}\right)}+\frac{1}{x \log 3}
$$

b. If $y=\frac{\tan ^{2}\left(e^{x}-3\right)}{\log \left(3 x^{2}+5\right)}$, then $\frac{d y}{d x}=\frac{2 e^{x} \tan \left(e^{x}-3\right) \sec ^{2}\left(e^{x}-3\right)}{\log \left(3 x^{2}+5\right)}-\frac{6 x \tan ^{2}\left(e^{x}-3\right)}{\left(3 x^{2}+5\right)\left(\log \left(3 x^{2}+5\right)\right)^{2}}$.
c. If $y=\left(\log \left(\cos \left(e^{3 x+7}\right)\right)\right)^{6}$, then $\frac{d y}{d x}=-18 e^{3 x+7}\left(\log \left(\cos \left(e^{3 x+7}\right)\right)\right)^{5} \tan \left(e^{3 x+7}\right)$.
d. If $y=(\cot x)^{\sin x}$, then logarithmic differentiation gives

$$
\frac{d y}{d x}=y \frac{d}{d x}\{\log y\}=-(\cot x)^{\sin x}\{(\cos x) \log (\tan x)+\sec x\}
$$

e. If $y=\sqrt[4]{\frac{x^{5} \sin ^{2}(x)}{(x-5)^{6}}}$, then logarithmic differentiation gives

$$
\frac{d y}{d x}=y \frac{d}{d x}\{\log |y|\}=\frac{1}{4} \sqrt[4]{\frac{x^{5} \sin ^{2}(x)}{(x-5)^{6}}}\left\{\frac{5}{x}+2 \cot (x)+\frac{6}{5-x}\right\}
$$

9. Since $f(x)=x^{3}+33 x-8$ is a polynomial in x, the Intermediate Value Theorem and the Mean Value Theorem apply to f on any closed interval of positive length. Now

$$
f(0)=-8<0 \quad \text { and } \quad f(1)=26>0
$$

so the Intermediate Value Theorem implies that there is a real number ξ such that $0<\xi<1$ and $f(\xi)=0$. If $\xi^{\prime} \neq \xi$, then the Mean Value Theorem implies that there is a real number η between ξ and ξ^{\prime} such that

$$
f\left(\xi^{\prime}\right)-f(\xi)=f^{\prime}(\eta)\left(\xi^{\prime}-\xi\right), \quad \text { or } \quad f\left(\xi^{\prime}\right)=\left(3 \eta^{2}+33\right)\left(\xi^{\prime}-\xi\right),
$$

and hence $\left|f\left(\xi^{\prime}\right)\right| \geqslant 33\left|\xi^{\prime}-\xi\right|>0$. Therefore, ξ is the unique real zero of f.
10. If

$$
f(x)=\frac{2}{x^{2}}-\frac{9}{x^{4}}=\frac{2 x^{2}-9}{x^{4}}, \quad \text { then } \quad f^{\prime}(x)=-\frac{4}{x^{3}}+\frac{36}{x^{5}}=\frac{4\left(9-x^{2}\right)}{x^{5}}
$$

a. Since f is continuous at every real number besides zero, $\lim _{x \rightarrow 0} f(x)=-\infty$ and $\lim _{x \rightarrow \pm \infty} f(x)=0$, the asymptotes of the graph of f are defined by $x=0$ and $y=0$.
b. Since $f^{\prime}(x)>0$ if $x<-3$ or $0<x<3$, and $f^{\prime}(x), 0$ if $-3<x<0$ or $3<x, f$ is increasing on the intervals $(-\infty,-3]$ and $(0,3]$ (NOT on the union $(-\infty,-3] \cup(0,3]$; for example, $-4<1$ but $f(-4)>0>f(1))$, and decreasing on the intervals $[-3,0)$ and $[3, \infty)$.
c. From Parts a and b, it follows that $f(\pm 3)=\frac{1}{9}$ is the (local and global) maximum value of f, and that f has no (local or global) minimum values.
11. Since $y=x(x-5)^{2 / 3}$ is a continuous function of x on \mathbb{R}, and $y=x^{5 / 3}\left(1-5 x^{-1}\right)^{2 / 3}$ if $x \neq 0$, the curve has no vertical, horizontal or oblique asymptotes, nor any global extrema. The axis intercepts of the curve are $(0,0)$ and $(5,0)$. Now

$$
\frac{d y}{d x}=\frac{5(x-3)}{3(x-5)^{1 / 3}}, \quad \text { so } \frac{d y}{d x}>0 \text { if } x<3 \text { or } 5<x, \quad \text { and } \quad \frac{d y}{d x}<0 \text { if } 3<x<5
$$

Hence, y is increasing on $(-\infty, 3$] and on $[5, \infty)$, decreasing on $[3,5]$, and has a local maximum at $(3,3 \sqrt[4]{4})$ and a local minimum at $(5,0)$. Next,

$$
\frac{d^{2} y}{d x^{2}}=\frac{10(x-6)}{9(x-5)^{4 / 3}}, \quad \text { so } \quad \frac{d^{2} y}{d x^{2}}>0 \text { if } 6<x, \quad \text { and } \quad \frac{d^{2} y}{d x^{2}}<0 \text { if } x<5 \text { or } 5<x<6
$$

So the curve is concave up on $[6, \infty)$, concave down on $(-\infty, 5]$ and on $[5, \infty)$, and has a point of inflection at $(6,6)$. In the sketch (which is not to scale-the x-axis is dilated by a factor of 2), the points of interest are emphasised.

12. If $f(t)=4 t^{3}-5 t^{2}-8 t+3$, then $f^{\prime}(t)=12 t^{2}-10 t-8=2(2 t+1)(3 t-4)$, so the critical number of f in $(-1,1)$ is $-\frac{1}{2}$. Since $f(-1)=2, f\left(-\frac{1}{2}\right)=\frac{21}{4}$ and $f(1)=-6$, the largest and smallest values of f on $[-1,1]$ are, respectively, $\frac{21}{4}$ and -6 .
13. If x is the distance between M and P, and y is the distance between P and C (each measured in kilometres), then $0 \leqslant x \leqslant 4$ and $x+y=4$, so $\frac{d y}{d x}=-1$. The total length of the cable is (by Pythagoras' formula) $\ell=2 \sqrt{x^{2}+3^{2}}+y$. By First Derivative Test (or Snellius' principle), the minimum value of ℓ occurs where

$$
\frac{2 x}{\sqrt{x^{2}+3^{2}}}=1, \quad \text { i.e., } \quad 4 x^{2}=x^{2}+3^{2}, \quad \text { or } \quad x=\sqrt{ } 3 \quad(\text { since } x \geqslant 0)
$$

Therefore, P should be $\sqrt{ } 3$ kilometres east of M to minimise the total length of the cable.
14. If $a=\frac{d v}{d t}=6 t+4$ and $v_{0}=-6$, then by inspection, $v=3 t^{2}+4 t-6$. Likewise, since $v=\frac{\mathrm{ds}}{\mathrm{dt}}$, if the initial position of the particle is $\mathrm{s}_{0}=9$ then $s=\mathrm{t}^{3}+2 \mathrm{t}^{2}-6 \mathrm{t}+9$.
15. If $[0,2]$ is divided into k subintervals of equal length, then the corresponding right endpoint Riemann sum of $2 x^{3}-1$ is

$$
\begin{aligned}
\mathcal{R}_{k} & =\frac{2}{k} \sum_{j=1}^{k}\left\{2\left(\frac{2}{k} j\right)^{3}-1\right\}=\frac{2}{k}\left\{\frac{16}{k^{3}} \sum_{j=1}^{k} j^{3}-k\right\}=2\left\{\frac{16}{k^{4}} \cdot \frac{1}{4} k^{2}(k+1)^{2}-1\right\} \\
& =2\left\{4\left(1+\frac{1}{k}\right)^{2}-1\right\}
\end{aligned}
$$

Therefore, $\int_{0}^{2}\left(2 x^{3}-1\right) \mathrm{d} x=\lim _{k \rightarrow \infty} \mathcal{R}_{k}=2(4-1)=6$.
16. a. Integrating by inspection (and noting that $3^{x}=e^{(\log 3) x}$) gives

$$
\int\left(e^{x}+x^{3}+3^{x}+e^{3}\right) d x=e^{x}+\frac{1}{4} x^{4}+3^{x}(\log 3)^{-1}+e^{3} x+a
$$

b. Since $(2 x+\sqrt{ } x)^{2}=4 x^{2}+4 x \sqrt{ } x+x$, it follows that

$$
\int \frac{(2 x+\sqrt{ } x)^{2}}{x^{3}} d x=\int\left(4 x^{-1}+4 x^{-3 / 2}+x^{-2}\right) d x=4 \log x-8 x^{-1 / 2}-x^{-1}+b
$$

c. Since $\sec \vartheta \tan \vartheta \csc \vartheta=\sec ^{2} \vartheta$, it follows that

$$
\int_{\frac{1}{6} \pi}^{\frac{1}{3} \pi} \sec \vartheta \tan \vartheta \csc \vartheta d \vartheta=\left.\tan \vartheta\right|_{\frac{1}{6} \pi} ^{\frac{1}{3} \pi}=\sqrt{ } 3-\frac{1}{3} \sqrt{ } 3=\frac{2}{3} \sqrt{ } 3 .
$$

d. Below is a sketch of the graph of $y=|2 x-1|$ on $[-3,2]$ (not to scale).

The definite integral is the sum of the areas of the shaded triangles, i.e.,

$$
\int_{-3}^{2}|2 x-1| d x=\frac{49}{4}+\frac{9}{4}=\frac{29}{2} .
$$

17. The expression in the limit is a right endpoint Riemann sum of $\sqrt[3]{x}$, with $[0,1]$ divided into n subintervals of equal length, i.e.,

$$
\lim _{n \rightarrow \infty}\left\{\frac{1}{n} \sum_{v=1}^{n} \sqrt[3]{\frac{v}{n}}\right\}=\int_{0}^{1} \sqrt[3]{x} d x=\left.\frac{3}{4} x^{4 / 3}\right|_{0} ^{1}=\frac{3}{4}
$$

18. By the interval additivity of the definite integral and the Fundamental Theorem of Calculus,

$$
\frac{d}{d x} \int_{\log x}^{x} t e^{t} d t=\frac{d}{d x} \int_{0}^{x} t e^{t} d t-\frac{d}{d x} \int_{0}^{\log x} t e^{t} d t=x e^{x}-\frac{(\log x) e^{\log x}}{x}=x e^{x}-\log x
$$

Therefore,

$$
\frac{d^{2}}{d x^{2}} \int_{\log x}^{x} t e^{t} d t=\frac{d}{d x}\left\{x e^{x}-\log x\right\}=e^{x}(x+1)-x^{-1}
$$

where the last expression is interpreted only for positive values of x.
19. a. If $x \neq 2$, then

$$
y=\frac{x^{3}-4 x}{x-2}=\frac{x(x-2)(x+2)}{x-2}=x(x+2), \quad \text { and hence } \quad \lim _{x \rightarrow 2} y=8
$$

So the curve has a hole, not a vertical asymptote, where $x=2$, and the statement is false.
b. The absolute value function is continuous but not differentiable at 0 , so the statement is false.
c. Since $\frac{d}{d x}\left\{x^{2} \log x\right\}=2 x \log x+x^{2} \cdot x^{-1}=2 x \log x+x$, the statement is true.
d. Since $\sqrt{\tan x}$ is defined if $x=\pi$, the definite integral of $\sqrt{\tan x}$ on $[\pi, \pi]$ is zero, so the statement is true.

