[10] 1. Evaluate the following limits:

(a)
$$\lim_{x \to -2} \frac{x^2 + 2x}{x^2 + 6x + 8}$$

(b)
$$\lim_{x \to -2^-} \frac{x+1}{4-x^2}$$

(c)
$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

(d)
$$\lim_{x \to 4} \frac{\frac{1}{x} - \frac{1}{4}}{2 - \sqrt{x}}$$

(e)
$$\lim_{x \to 0} \frac{\tan x - \sin(2x)}{x}$$

[4] 2. Find the values of a and b that make f continuous everywhere.

$$f(x) = \begin{cases} \frac{x+1}{x^2 + x} & \text{if } x < -1\\ ax + b & \text{if } -1 \le x < 2\\ x^2 - 2 & \text{if } x \ge 2 \end{cases}$$

- [3] 3. Sketch the graph of a function f such that all the following conditions are satisfied:
 - f(-5) = 0, $f(-\frac{1}{2}) = 0$ and f(3) is undefined;
 - $\lim_{x \to -4} f(x) = \infty$, $\lim_{x \to 1^-} f(x) = \infty$ and $\lim_{x \to 1^+} f(x) = -\infty$;
 - $\bullet \lim_{x \to \infty} f(x) = -3.$
- [4] 4. Find the derivative of $f(x) = \sqrt{x^2 + 1}$, using the limit definition of the derivative. Verify your answer using the derivative rules.
- [1] 5. Evaluate $\lim_{h\to 0} \frac{\sin\left(\frac{\pi}{2}+h\right)-1}{h}$. (Hint: Interpret this as a derivative.)
- [3] 6. Find (both coordinates of) each point on the parabola defined by $y = 2x^2 + 1$ at which the tangent line passes through the point (1, -5).

- [4] 7. Find an equation of the tangent line to the curve $x^2 + 2xy + 4y^2 = 13$ at the point (-1, 2).
- [15] 8. Find $\frac{dy}{dx}$ for each of the following. Do not simplify your answers.
 - (a) $y = \cos^2(x)\sec(x^2) + \log_3 x + \pi^e$
 - (b) $y = \frac{\tan^2(e^x 3)}{\ln(3x^2 + 5)}$
 - (c) $y = (\ln(\cos(e^{3x+7})))^6$
 - (d) $y = (\cot x)^{\sin x}$
 - (e) $y = \sqrt[4]{\frac{x^5 \sin^2 x}{(x-5)^6}}$ (Use logarithmic differentiation.)
 - [3] 9. Prove that the equation $x^3 + 33x 8 = 0$ has exactly one root. Use the intermediate value theorem and Rolle's theorem in your proof.
- [5] 10. Given the function $f(x) = \frac{2}{x^2} \frac{9}{x^4}$
 - (a) state the equations of all horizontal and vertical asymptotes of f
 - (b) find the intervals on which f is increasing or decreasing
 - (c) find all local maximum or minimum values of f
- [9] 11. Given

$$f(x) = x(x-5)^{2/3}$$
 $f'(x) = \frac{5(x-3)}{3(x-5)^{1/3}}$ $f''(x) = \frac{10(x-6)}{9(x-5)^{4/3}}$

with $3(2^{2/3}) \approx 5$, find:

- (a) the domain of f,
- (b) x- and y- intercepts,
- (c) vertical and horizontal asymptotes, if any,
- (d) intervals on which f is increasing or decreasing,
- (e) local extrema,
- (f) intervals on which f is concave upward or downward,
- (g) inflection point(s).

Sketch the graph of f. Label all intercepts, asymptotes, extrema and inflection point(s).

[4] 12. Find the absolute maximum and minimum of $f(t) = 4t^3 - 5t^2 - 8t + 3$ on [-1, 1].

[6] 13. Factory A is 6 kilometres north of factory B, while power plant C is 4 kilometres east of the midpoint M of AB. Power is to be delivered to these two factories via a cable that will run from C to some point P (as in the diagram), where it will split into two branches going to A and B. How far away from the midpoint M should the branch point P be located in order to minimize the total length of the cable between A, B and C?

- [3] 14. A particle moves in a straight line and has acceleration given by a(t) = 6t + 4 cm/s². Its initial velocity is v(0) = -6 cm/s. and its initial displacement is s(0) = 9 cm. Find its position function s(t).
- [4] 15. Compute $\int_0^2 (2x^3 1)dx$ as a limit of Riemann sums. Note that $\sum_{i=1}^n i^3 = \left[\frac{n(n+1)}{2}\right]^2$.
- [12] 16. Evaluate each of the following integrals.

(a)
$$\int (e^x + x^3 + 3^x + e^3) dx$$

(b)
$$\int \frac{(2x+\sqrt{x})^2}{x^3} dx$$

(c)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec \theta \tan \theta \csc \theta \, d\theta$$

(d)
$$\int_{-3}^{2} |2x - 1| dx$$

[3] 17. Evaluate the following limit by expressing it as a definite integral.

$$\lim_{n\to\infty}\frac{1}{n}\bigg(\sqrt[3]{\frac{1}{n}}+\sqrt[3]{\frac{2}{n}}+\sqrt[3]{\frac{3}{n}}+\ldots+\sqrt[3]{\frac{n}{n}}\bigg)$$

- [3] 18. Use the Fundamental Theorem of Calculus to find the **second derivative** (g''(x)) of $g(x) = \int_{\ln(x)}^{x} te^{t} dt$.
- [4] 19. True or False? Justify your answers!
 - (a) If $f(x) = \frac{x^3 4x}{x 2}$, then f has a vertical asymptote at x = 2.
 - (b) If f is continuous at x = a then it must be differentiable at x = a.
 - (c) If $\int f(x)dx = x^2 \ln x + C$, then $f(x) = x + 2x \ln x$.
 - (d) $\int_{\pi}^{\pi} \sqrt{\tan x} \, dx = 0$