[10] 1. Evaluate the following limits:
(a) $\lim _{x \rightarrow-2} \frac{x^{2}+2 x}{x^{2}+6 x+8}$
(b) $\lim _{x \rightarrow-2^{-}} \frac{x+1}{4-x^{2}}$
(c) $\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x^{2}+1}}{3 x-5}$
(d) $\lim _{x \rightarrow 4} \frac{\frac{1}{x}-\frac{1}{4}}{2-\sqrt{x}}$
(e) $\lim _{x \rightarrow 0} \frac{\tan x-\sin (2 x)}{x}$
[4] 2. Find the values of a and b that make f continuous everywhere.
$f(x)=\left\{\begin{array}{llc}\frac{x+1}{x^{2}+x} & \text { if } & x<-1 \\ a x+b & \text { if } & -1 \leq x<2 \\ x^{2}-2 & \text { if } & x \geq 2\end{array}\right.$
[3] 3. Sketch the graph of a function f such that all the following conditions are satisfied:

- $f(-5)=0, f\left(-\frac{1}{2}\right)=0$ and $f(3)$ is undefined;
- $\lim _{x \rightarrow-4} f(x)=\infty, \lim _{x \rightarrow 1^{-}} f(x)=\infty$ and $\lim _{x \rightarrow 1^{+}} f(x)=-\infty$;
- $\lim _{x \rightarrow \infty} f(x)=-3$.
[4] 4. Find the derivative of $f(x)=\sqrt{x^{2}+1}$, using the limit definition of the derivative. Verify your answer using the derivative rules.
[1] 5. Evaluate $\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{2}+h\right)-1}{h}$. (Hint : Interpret this as a derivative.)
[3] 6. Find (both coordinates of) each point on the parabola defined by $y=2 x^{2}+1$ at which the tangent line passes through the point $(1,-5)$.

[4] 7. Find an equation of the tangent line to the curve $x^{2}+2 x y+4 y^{2}=13$ at the point $(-1,2)$.
[15] 8. Find $\frac{d y}{d x}$ for each of the following. Do not simplify your answers.
(a) $y=\cos ^{2}(x) \sec \left(x^{2}\right)+\log _{3} x+\pi^{e}$
(b) $y=\frac{\tan ^{2}\left(e^{x}-3\right)}{\ln \left(3 x^{2}+5\right)}$
(c) $y=\left(\ln \left(\cos \left(e^{3 x+7}\right)\right)\right)^{6}$
(d) $y=(\cot x)^{\sin x}$
(e) $y=\sqrt[4]{\frac{x^{5} \sin ^{2} x}{(x-5)^{6}}} \quad$ (Use logarithmic differentiation.)
[3] 9. Prove that the equation $x^{3}+33 x-8=0$ has exactly one root. Use the intermediate value theorem and Rolle's theorem in your proof.
[5] 10. Given the function $f(x)=\frac{2}{x^{2}}-\frac{9}{x^{4}}$
(a) state the equations of all horizontal and vertical asymptotes of f
(b) find the intervals on which f is increasing or decreasing
(c) find all local maximum or minimum values of f
[9] 11. Given

$$
f(x)=x(x-5)^{2 / 3} \quad f^{\prime}(x)=\frac{5(x-3)}{3(x-5)^{1 / 3}} \quad f^{\prime \prime}(x)=\frac{10(x-6)}{9(x-5)^{4 / 3}}
$$

with $3\left(2^{2 / 3}\right) \approx 5$, find:
(a) the domain of f,
(b) x - and y - intercepts,
(c) vertical and horizontal asymptotes, if any,
(d) intervals on which f is increasing or decreasing,
(e) local extrema,
(f) intervals on which f is concave upward or downward,
(g) inflection point(s).

Sketch the graph of f. Label all intercepts, asymptotes, extrema and inflection point(s).
[4] 12. Find the absolute maximum and minimum of $f(t)=4 t^{3}-5 t^{2}-8 t+3$ on $[-1,1]$.
[6] 13. Factory A is 6 kilometres north of factory B, while power plant C is 4 kilometres east of the midpoint M of $A B$. Power is to be delivered to these two factories via a cable that will run from C to some point P (as in the diagram), where it will split into two branches going to A and B. How far away from the midpoint M should the branch point P be located in order to minimize the total length of the cable between A, B and C ?

[3] 14. A particle moves in a straight line and has acceleration given by $a(t)=6 t+4 \mathrm{~cm} / \mathrm{s}^{2}$. Its initial velocity is $v(0)=-6 \mathrm{~cm} / \mathrm{s}$. and its initial displacement is $s(0)=9 \mathrm{~cm}$. Find its position function $s(t)$.
[4] 15. Compute $\int_{0}^{2}\left(2 x^{3}-1\right) d x$ as a limit of Riemann sums. Note that $\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$.
[12] 16. Evaluate each of the following integrals.
(a) $\int\left(e^{x}+x^{3}+3^{x}+e^{3}\right) d x$
(b) $\int \frac{(2 x+\sqrt{x})^{2}}{x^{3}} d x$
(c) $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec \theta \tan \theta \csc \theta d \theta$
(d) $\int_{-3}^{2}|2 x-1| d x$
[3] 17. Evaluate the following limit by expressing it as a definite integral. $\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sqrt[3]{\frac{1}{n}}+\sqrt[3]{\frac{2}{n}}+\sqrt[3]{\frac{3}{n}}+\ldots+\sqrt[3]{\frac{n}{n}}\right)$
[3] 18. Use the Fundamental Theorem of Calculus to find the second derivative $\left(g^{\prime \prime}(x)\right)$ of $g(x)=\int_{\ln (x)}^{x} t e^{t} d t$.
[4] 19. True or False? Justify your answers!
(a) If $f(x)=\frac{x^{3}-4 x}{x-2}$, then f has a vertical asymptote at $x=2$.
(b) If f is continuous at $x=a$ then it must be differentiable at $x=a$.
(c) If $\int f(x) d x=x^{2} \ln x+C$, then $f(x)=x+2 x \ln x$.
(d) $\int_{\pi}^{\pi} \sqrt{\tan x} d x=0$

