Solutions

1. a. If $y=\sqrt{\sin x}$ then $2 y d y=\cos x d x$ and $\cos ^{2} x=1-y^{4}$, so

$$
\int \frac{\cos ^{3} x}{\sqrt{\sin x}} d x=2 \int\left(1-y^{4}\right) d y=2\left(y-\frac{1}{5} y^{5}\right)+a=\frac{2}{5}\left(5-\sin ^{2} x\right) \sqrt{\sin x}+a
$$

b. If $y=\arcsin \left(x^{2}\right)$ then $d y=2 x\left(1-x^{4}\right)^{-1 / 2} d x$, so

$$
\int \frac{x \arcsin \left(x^{2}\right)}{\sqrt{1-x^{4}}} d x=\frac{1}{2} \int y d y=\frac{1}{4}\left(\arcsin \left(x^{2}\right)\right)^{2}+b
$$

c. The resolution into partial fractions of the integrand is

$$
\frac{x+6}{x\left(x^{2}+2 x+3\right)}=\frac{2}{x}-\frac{2 x+3}{x^{2}+2 x+3}
$$

where the coefficient over x is found by inspection (covering and evaluating) and the coefficients over $x^{2}+2 x+3$ are obtained by comparing the quadratic and linear terms of the numerator. The integral of the second partial fraction is

$$
\int\left\{\frac{2 x+2}{x^{2}+2 x+3}+\frac{1}{(x+1)^{2}+2}\right\} d x=\log \left(x^{2}+2 x+3\right)+\frac{1}{2} \sqrt{ } 2 \arctan \left(\frac{1}{2} \sqrt{ } 2(x+1)\right)+c
$$ and therefore

$$
\int \frac{x+6}{x\left(x^{2}+2 x+3\right)} d x=\log \frac{x^{2}}{x^{2}+2 x+3}-\frac{1}{2} \sqrt{ } 2 \arctan \left(\frac{1}{2} \sqrt{ } 2(x+1)\right)+c
$$

d. Repeated partial integration and absorption gives

$$
\begin{aligned}
\int \sin (\log x) d x & =x \sin (\log x)-x \cos (\log x)-\int \sin (\log x) d x \\
& =\frac{1}{2} x(\sin (\log x)-\cos (\log x))+d
\end{aligned}
$$

e. If $y=\sqrt{x^{2}-4}$, then $y^{2}=x^{2}-4$, so $y d y=x d x$, or $d x /(x y)=d y /\left(x^{2}\right)$, and thus

$$
d\left(\frac{y}{x^{2}}\right)=\frac{d y}{x^{2}}-\frac{2 y d x}{x^{3}}=\frac{d y}{x^{2}}-\frac{2\left(x^{2}-4\right)}{x^{3} y} d x=\frac{8 d x}{x^{3} y}-\frac{d y}{y^{2}+4}
$$

Therefore,

$$
\int \frac{d x}{x^{3} \sqrt{x^{2}-4}}=\frac{y}{8 x^{2}}+\frac{1}{8} \int \frac{d y}{y^{2}+4}=\frac{\sqrt{x^{2}-4}}{8 x^{2}}+\frac{1}{16} \arctan \left(\frac{1}{2} \sqrt{x^{2}-4}\right)+E
$$

f. Multiplying and dividing by $\sqrt{3+x}$ omits -3 from the domain of the integrand, and gives

$$
\int \frac{3+x}{\sqrt{9-x^{2}}} d x=3 \arcsin \left(\frac{1}{3} x\right)-\int d y=3 \arcsin \left(\frac{1}{3} x\right)-\sqrt{9-x^{2}}+f
$$

where in the second term $y=\sqrt{9-x^{2}}$, so that $d y=-(x / y) d x$.
2. a. Revising the expression in the limit and using the fact that $\lim _{\vartheta \rightarrow 0} \frac{\sin \vartheta}{\vartheta}=1$ gives

$$
\lim _{x \rightarrow 0^{+}} \frac{\log (\sin x)}{\log (\sin 2 x)}=\lim _{x \rightarrow 0^{+}} \frac{1+\log \left(\frac{\sin x}{x}\right) /(\log x)}{1+\log \left(2 \frac{\sin 2 x}{2 x}\right) /(\log x)}=1
$$

b. If $y=\frac{1}{2} \pi-x$ and $z=1 / y$ then

$$
\lim _{x \rightarrow \frac{1}{2} \pi^{-}}(\tan x)^{2 x-\pi}=\lim _{y \rightarrow 0^{+}}(\cot y)^{-2 y}=\lim _{y \rightarrow 0^{+}}\left(\frac{\sin y}{y \cos y}\right)^{2 y} \cdot \lim _{z \rightarrow \infty} e^{-2(\log z) / z}=1
$$

by elementary properties of the logarithm (the definition of $\log z$ implies that $0<\log z<z$ if $z>1$, which immediately gives $0<(\log z)^{a} / z^{b}<(2 a / b)^{a} z^{-b / 2}$ for $z>1$ and $\left.a, b>0\right)$.
c. Combining terms and using the Maclaurin expansion of the exponential function gives

$$
\lim _{x \rightarrow 0} \frac{e^{3 x}-1-3 x}{x\left(e^{3 x}-1\right)}=\lim _{x \rightarrow 0} \frac{\frac{9}{2}+\frac{9}{2} x+\frac{27}{8} x^{2}+\cdots}{3+\frac{9}{2} x+\frac{9}{2} x^{2}+\cdots}=\frac{3}{2}
$$

(Alternatively, two applications of l'Hôpital's rule could be used.)
3. a. Partial integration gives

$$
\int_{0}^{\infty}\left(-x e^{-x}\right) d x=\left.\lim _{t \rightarrow \infty}(x+1) e^{-x}\right|_{0} ^{\infty}=\lim _{t \rightarrow \infty}\left\{\frac{t+1}{e^{t}}-1\right\}=-1
$$

via basic properties of the exponential function (the inequality proved in Part c of Question 2 immediately gives $0<y^{a} / e^{b y^{c}}<(2 a /(b c))^{a / c} e^{-\frac{1}{2} b y^{c}}$ for $\left.a, b, c, y>0\right)$.
b. Integrating by inspection gives

$$
\int_{0}^{2} \frac{d x}{(x-1)^{2 / 3}}=\left.\lim _{s \rightarrow 1^{-}} 3 \sqrt[3]{x-1}\right|_{0} ^{s}+\left.\lim _{t \rightarrow 1^{+}} 3 \sqrt[3]{x-1}\right|_{t} ^{2}=6
$$

4. For $-\frac{1}{2} \pi<x<\frac{1}{2} \pi$, the equation in question is equivalent to

$$
\frac{1}{\sqrt{y^{2}+4}} \frac{d y}{d x}=\tan x, \quad \text { or } \quad \log \left(y+\sqrt{y^{2}+4}\right)=\log (\sec x)+C
$$

which is equivalent to $y+\sqrt{y^{2}+4}=A \sec x$ (in which $A=e^{C}$). The initial condition $y=0$ if $x=0$ gives $A=2$, so $y+\sqrt{y^{2}+4}=2 \sec x$. To express y as a function of x, observe that subtracting y and squaring gives $4 \sec ^{2} x-4 y \sec x=4$, or $y=\sec x-\cos x=\sin x \tan x$.
5. If $\bar{y}=x^{3}+x+4$ and $\underline{y}=x^{3}+x^{2}+3 x+1$ then $\bar{y}-\underline{y}=-x^{2}-2 x+3=(3+x)(1-x)$, which is positive if $-3<\bar{x}<1$ and vanishes if x is -3 or $\underline{1}$. So the area of the region enclosed by the curves is

$$
\int_{-3}^{1}(\bar{y}-\underline{y}) d x=\int_{-3}^{1}\left(-x^{2}-2 x+3\right) d x=\left.\left(-\frac{1}{3} x^{3}-x^{2}+3 x\right)\right|_{-3} ^{1}=-\frac{28}{3}+8+12=\frac{32}{3}
$$

6. If $\bar{y}=x+1$ and $\underline{y}=x^{3}+x$ then $\bar{y}-\underline{y}=1-x^{3}$, which is positive if $0<x<1$ and vanishes if $x=1$. The solid $\overline{\mathrm{ob}}$ tained by revolving \mathcal{R} about the x axis consists of annuli of inner radius $x^{3}+x$ and outer radius $x+1$, for $0 \leqslant x \leqslant 1$, so its volume is equal to

$$
\pi \int_{0}^{1}\left\{(x+1)^{2}-\left(x^{3}+x\right)^{2}\right\} d x
$$

The solid obtained by revolving \mathcal{R} about the line defined by $x=3$ consists of concentric cylindrical shells of radius $3-x$ and height $1-x^{3}$, for $0 \leqslant x \leqslant 1$, so its volume is equal to

$$
2 \pi \int_{0}^{1}(3-x)\left(1-x^{3}\right) d x
$$

7. If $x=\frac{1}{4} y^{2}-\frac{1}{2} \log y$, then

$$
1+\left(\frac{d x}{d y}\right)^{2}=1+\left(\frac{1}{2} y-\frac{1}{2} y^{-1}\right)^{2}=\frac{1}{4} y^{2}+\frac{1}{2}+\frac{1}{4} y^{-2}=\left(\frac{1}{2} y+\frac{1}{2} y^{-1}\right)^{2}
$$

and hence

$$
\int_{1}^{y} \sqrt{1+\left(\frac{d x}{d \eta}\right)^{2}} d \eta=\frac{1}{2} \int_{1}^{y}\left(\eta+\eta^{-1}\right) d \eta=\frac{1}{4}\left(y^{2}-1\right)+\frac{1}{2} \log y
$$

which is the length of the curve between $\left(\frac{1}{4}, 1\right)$ and (x, y) if $y \geqslant 1$, and is -1 times the length of the curve between $\left(\frac{1}{4}, 1\right)$ and (x, y) if $0<y<1$.
8. a. Since

$$
\lim _{t \rightarrow 0}(1+t)^{1 / t}=e, \quad \lim _{n \rightarrow \infty} \frac{2 n}{3 n-1}=\frac{2}{3}
$$

and

$$
a_{n}=\left(\frac{3 n+1}{3 n-1}\right)^{n}=\left(1+\frac{2}{3 n-1}\right)^{\frac{3 n-1}{2} \cdot \frac{2 n}{3 n-1}}
$$

it follows that $\lim _{n \rightarrow \infty} a_{n}=e^{2 / 3}$.
b. Since

$$
a_{n}=\frac{n^{3}(2 n)!}{(2 n+2)!}=\frac{n^{3}}{(2 n+2)(2 n+1)}=\frac{n}{2(1+1 / n)(2+1 / n)}
$$

it follows that the sequence $\left\{a_{n}\right\}$ diverges to ∞.
9. If

$$
a_{n}=\frac{1}{n}-\frac{1}{n+2} \quad \text { and } \quad A_{n}=\frac{1}{n}+\frac{1}{n+1}
$$

then $a_{n}=A_{n}-A_{n+1}$ for $n \geqslant 1$, and the sum of the first n terms of the series is

$$
a_{1}+a_{2}+\cdots+a_{n}=A_{1}-A_{n+1}=\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2}
$$

Hence, the sum of the series is $\lim _{n \rightarrow \infty}\left(a_{1}+a_{2}+\cdots+a_{n}\right)=\frac{3}{2}$.
10. a. If $n \geqslant 1$ then

$$
a_{n}=\frac{\sqrt{n^{2}+3}}{3 n^{2}+7}>\frac{\sqrt{ } n^{2}}{3 n^{2}+7 n^{2}}=\frac{1}{10 n}>0
$$

so the comparison test implies that $\sum a_{n}$ diverges with the harmonic series.
b. Since $\frac{d}{d x}\left(x^{-1 / 4} \log x\right)=\frac{1}{4} x^{-5 / 4}(4-\log x)$ is positive if $0<x<e^{4}$ and negative if $x>e^{4}$, it follows that

$$
0 \leqslant a_{n}=\frac{\log n}{n^{3 / 2}}=\frac{\log n}{n^{1 / 4}} \cdot \frac{1}{n^{5 / 4}}<\frac{4}{e} \cdot \frac{1}{n^{5 / 4}}
$$

for $n \geqslant 1$. Therefore, the comparison test implies that $\sum a_{n}$ converges with the p-series $\sum n^{-5 / 4}$.
11. a. Since $\sum 2^{-n}$ is a convergent geometric series, and

$$
0<a_{n}=\frac{n!}{1 \cdot 3 \cdot 5 \cdot 7 \cdots(2 n+1)}=1 \cdot \frac{1}{3} \cdot \frac{2}{5} \cdot \frac{3}{7} \cdots \frac{n}{2 n+1}<\left(\frac{1}{2}\right)^{n}
$$

for $n \geqslant 1$, the comparison test implies that $\sum(-1)^{n} a_{n}$ is absolutely convergent.
b. If $n>3$ then

$$
a_{n}=\frac{n^{n}}{3^{n+1}}=\frac{1}{3} \cdot \frac{n}{3} \cdot \frac{n}{3} \cdot \frac{n}{3} \cdots \frac{n}{3}>\frac{n}{9}>0, \quad \text { so } \quad \lim _{n \rightarrow \infty} a_{n}=\infty .
$$

Hence, the vanishing condition implies that $\sum(-1)^{n} a_{n}$ is divergent.
c. If $n \geqslant 1$ then

$$
a_{n}=\frac{1}{\sqrt{5 n+3}} \geqslant \frac{1}{\sqrt{5 n+3 n}}=\frac{\sqrt{ } 2}{4} \cdot \frac{1}{\sqrt{ } n}>0
$$

so the comparison test implies that $\sum a_{n}$ diverges with the p-series $\sum n^{-1 / 2}$. On the other hand,

$$
a_{n}=\frac{1}{\sqrt{5 n+3}}>\frac{1}{\sqrt{5 n+8}}=a_{n+1}
$$

if $n \geqslant 1$, and $\lim a_{n}=0$, so the alternating series test implies that $\sum(-1)^{n} a_{n}$ is convergent. Therefore, the series $\sum \cos (n \pi) a_{n}=\sum(-1)^{n} a_{n}$ is conditionally convergent.
12. If $x \neq-1$ and

$$
\alpha_{n}=\frac{(-1)^{n}(x+1)^{n}}{5^{n} \sqrt{ } n}, \quad \text { then } \quad \lim \left|\frac{\alpha_{n+1}}{\alpha_{n}}\right|=\lim \frac{1}{5 \sqrt{1+1 / n}}|x+1|=\frac{1}{5}|x+1|
$$

so the ratio test implies that $\sum \alpha_{n}$ is absolutely convergent if $|x+1|<5$, i.e., $-6<x<4$, and divergent if $x<-6$ or $x>4$. If $x=-6$ then $\sum \alpha_{n}=\sum n^{-1 / 2}$ is a divergent p-series ($p=\frac{1}{2} \leqslant 1$), and if $x=4$ then $\sum \alpha_{n}=\sum(-1)^{n} n^{-1 / 2}$, which is convergent by the alternating series test $\left(n^{-1 / 2}>(n+1)^{-1 / 2}\right.$ if $n \geqslant 1$, and $\left.\lim n^{-1 / 2}=0\right)$. Therefore, the radius of convergence of $\sum \alpha_{n}$ is 5 , and the interval of convergence of $\sum \alpha_{n}$ is $(-6,4]$.
13. From the expansion $1 /(1+t)=\sum_{k=0}^{\infty}(-1)^{k} t^{k}$ (a geometric series), it follows that

$$
\begin{aligned}
\frac{1}{2+x} & =\frac{1}{3} \cdot \frac{1}{1+\frac{1}{3}(x-1)}=\frac{1}{3} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{3^{k}}(x-1)^{k} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{3^{k+1}}(x-1)^{k} \\
& =\frac{1}{3}-\frac{1}{9}(x-1)+\frac{1}{27}(x-1)^{2}-\frac{1}{81}(x-1)^{3}+\cdots,
\end{aligned}
$$

which is valid if $\frac{1}{3}|x-1|<1$, or equivalently, $-2<x<4$.

