Final Examination 201-NYB-05 December 2016

1. Evaluate the following integrals.
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. Evaluate the following limits.
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. Evaluate each improper integral or show that it diverges.
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. Give the solution of the differential equation cos x d—y = sinx+/y? + 4 which satisfies y = 0 if z = 0.
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. Find the area of the region bounded by y; = 2% + 22 + 3z 4+ 1 and 3, = 2® + = + 4.

. Let R be the region bounded by z = 0, f(z) = 1 + x and g(z) = 2> + x. Set up, but do not evaluate, an
integral which represents the volume obtained by revolving R about:

(a) the z-axis;
(b) the line x = 3.

. Find the arc length function for the curve z = y -3 ln y, taking ( 1) as the starting point.

. Determine with justification, whether the sequence {a,} converges or diverges. If a sequence converges, find
its limit.
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. For the telescopi jes Y (= — ,
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(a) give a formula for s,, the sum of the first n terms of the series, and (b) find the sum of the series.
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10. Determine whether each series is convergent or divergent. Justify your answers.
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11. Determine whether each series is absolutely convergent, conditionally convergent or divergent. Justify your
answers by displaying proper solutions.
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12. Find the radius and interval of convergence of the power series
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13. For the function f(z) = G find the Taylor series around z = 1. Write the first four terms of the series
x

explicitly, and express the series using appropriate sigma notation.
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