1. Evaluate the following integrals.
(a) $\int \frac{\cos ^{3} x}{\sqrt{\sin x}} d x$
(b) $\int \frac{x \arcsin \left(x^{2}\right)}{\sqrt{1-x^{4}}} d x$
(c) $\int \frac{x+6}{x\left(x^{2}+2 x+3\right)} d x$
(d) $\int \sin (\ln x) d x$
(e) $\int \frac{1}{x^{3} \sqrt{x^{2}-4}} d x$
(f) $\int \sqrt{\frac{3+x}{3-x}} d x$
2. Evaluate the following limits.
(a) $\lim _{x \rightarrow 0^{+}} \frac{\ln (\sin x)}{\ln (\sin (2 x))}$
(b) $\lim _{x \rightarrow \pi / 2^{-}}(\tan x)^{2 x-\pi}$
(c) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{3}{e^{3 x}-1}\right)$
3. Evaluate each improper integral or show that it diverges.
(a) $\int_{0}^{\infty}\left(-x e^{-x}\right) d x$
(b) $\int_{0}^{2} \frac{1}{(x-1)^{2 / 3}} d x$
4. Give the solution of the differential equation $\cos x \frac{d y}{d x}=\sin x \sqrt{y^{2}+4}$ which satisfies $y=0$ if $x=0$.
5. Find the area of the region bounded by $y_{1}=x^{3}+x^{2}+3 x+1$ and $y_{2}=x^{3}+x+4$.
6. Let \mathcal{R} be the region bounded by $x=0, f(x)=1+x$ and $g(x)=x^{3}+x$. Set up, but do not evaluate, an integral which represents the volume obtained by revolving \mathcal{R} about:
(a) the x-axis;
(b) the line $x=3$.
7. Find the arc length function for the curve $x=\frac{1}{4} y^{2}-\frac{1}{2} \ln y$, taking $\left(\frac{1}{4}, 1\right)$ as the starting point.
8. Determine with justification, whether the sequence $\left\{a_{n}\right\}$ converges or diverges. If a sequence converges, find its limit.
(a) $a_{n}=\left(\frac{3 n+1}{3 n-1}\right)^{n}$
(b) $a_{n}=\frac{n^{3}(2 n)!}{(2 n+2)!}$
9. For the telescoping series $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+2}\right)$,
(a) give a formula for s_{n}, the sum of the first n terms of the series, and (b) find the sum of the series.
10. Determine whether each series is convergent or divergent. Justify your answers.
(a) $\sum_{n=0}^{\infty} \frac{\sqrt{n^{2}+3}}{3 n^{2}+7}$
(b) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3 / 2}}$
11. Determine whether each series is absolutely convergent, conditionally convergent or divergent. Justify your answers by displaying proper solutions.
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{1 \cdot 3 \cdot 5 \cdot 7 \cdot \cdots \cdot(2 n+1)}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{n}}{3^{n+1}}$
(c) $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{\sqrt{5 n+3}}$
12. Find the radius and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+1)^{n}}{5^{n} \sqrt{n}}
$$

13. For the function $f(x)=\frac{1}{2+x}$, find the Taylor series around $x=1$. Write the first four terms of the series explicitly, and express the series using appropriate sigma notation.
