1. Evaluate the following integrals.

(a)
$$\int \frac{\cos^3 x}{\sqrt{\sin x}} \, dx$$

(b)
$$\int \frac{x \arcsin(x^2)}{\sqrt{1-x^4}} \, dx$$

(c)
$$\int \frac{x+6}{x(x^2+2x+3)} dx$$

(d)
$$\int \sin(\ln x) dx$$

(e)
$$\int \frac{1}{x^3 \sqrt{x^2 - 4}} dx$$

(f)
$$\int \sqrt{\frac{3+x}{3-x}} \, dx$$

2. Evaluate the following limits.

(a)
$$\lim_{x \to 0^+} \frac{\ln(\sin x)}{\ln(\sin(2x))}$$

(b)
$$\lim_{x \to \pi/2^{-}} (\tan x)^{2x-\pi}$$

(c)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{3}{e^{3x} - 1}\right)$$

3. Evaluate each improper integral or show that it diverges.

(a)
$$\int_0^\infty (-xe^{-x}) dx$$

(b)
$$\int_0^2 \frac{1}{(x-1)^{2/3}} dx$$

4. Give the solution of the differential equation $\cos x \frac{dy}{dx} = \sin x \sqrt{y^2 + 4}$ which satisfies y = 0 if x = 0.

5. Find the area of the region bounded by $y_1 = x^3 + x^2 + 3x + 1$ and $y_2 = x^3 + x + 4$.

6. Let \mathcal{R} be the region bounded by x = 0, f(x) = 1 + x and $g(x) = x^3 + x$. Set up, **but do not evaluate**, an integral which represents the volume obtained by revolving \mathcal{R} about:

- (a) the x-axis;
- (b) the line x = 3.

7. Find the arc length function for the curve $x = \frac{1}{4}y^2 - \frac{1}{2}\ln y$, taking $(\frac{1}{4}, 1)$ as the starting point.

8. Determine with justification, whether the sequence $\{a_n\}$ converges or diverges. If a sequence converges, find its limit.

(a)
$$a_n = \left(\frac{3n+1}{3n-1}\right)^n$$

(b)
$$a_n = \frac{n^3(2n)!}{(2n+2)!}$$

9. For the telescoping series $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+2} \right)$,

(a) give a formula for s_n , the sum of the first n terms of the series, and (b) find the sum of the series.

- 10. Determine whether each series is convergent or divergent. Justify your answers.
 - (a) $\sum_{n=0}^{\infty} \frac{\sqrt{n^2 + 3}}{3n^2 + 7}$
 - (b) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$
- 11. Determine whether each series is absolutely convergent, conditionally convergent or divergent. Justify your answers by displaying proper solutions.
 - (a) $\sum_{n=1}^{\infty} (-1)^n \frac{n!}{1 \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n+1)}$
 - (b) $\sum_{n=1}^{\infty} \frac{(-1)^n n^n}{3^{n+1}}$
 - (c) $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{\sqrt{5n+3}}$
- 12. Find the radius and interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+1)^n}{5^n \sqrt{n}}.$$

13. For the function $f(x) = \frac{1}{2+x}$, find the Taylor series around x = 1. Write the first four terms of the series explicitly, and express the series using appropriate sigma notation.