1. Evaluate the following integrals.
(a) $\int x^{2} \cos ^{2}\left(x^{3}\right) d x$
(b) $\int e^{3 x} \sin (2 x) d x$
(c) $\int \frac{2 x^{2}-3 x-3}{(x-1)\left(x^{2}-2 x+5\right)} d x$
(d) $\int \frac{d x}{x^{4} \sqrt{x^{2}-9}}$
(e) $\int_{0}^{\pi / 4} 4 \sec ^{4} \theta \tan \theta d \theta$
(f) $\int_{1}^{16} \frac{d x}{\sqrt{x}(1+\sqrt[4]{x})}$
(g) $\int \frac{\ln (2 x)}{x \ln x} d x$
2. Evaluate the following improper integrals.
(a) $\int_{0}^{1} \frac{\ln x}{\sqrt{x}} d x$
(b) $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+9}$
3. Evaluate the following limits.
(a) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{(2 x-\pi)^{2}}$
(b) $\lim _{x \rightarrow 2}(\sin (\pi / x))^{\tan (\pi / x)}$
4. Let R be the region bounded by $y=\arcsin x$, $y=0$ and $x=1$.
(a) Evaluate the area of R

(b) Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating R about the line $y=\pi / 2$.
(c) Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating R about the line $x=2$.
5. Solve the differential equation

$$
x \sqrt{1-y^{2}}-\sqrt{1-x^{2}} \frac{d y}{d x}=0
$$

given that $y(1)=\sqrt{3} / 2$. Express y as a function of x.
6. Find an equation of the curve passing through the point $(-2, e)$ that has the property that the slope of the tangent line at any of its points is equal to the product of the x - and y-coordinates of that point.
7. Determine whether the sequence $\left\{a_{n}\right\}$ converges or diverges. If the sequence converges find its limit; otherwise, explain why it diverges.
(a) $a_{n}=(-1)^{n} \frac{\sqrt{n}+3}{5-3 \sqrt{n}}$
(b) $a_{n}=n^{2} \cos \left(\frac{1}{n}\right)-n^{2}$
8. Find the sum of the series $\sum_{n=2}^{\infty} \frac{\pi+(-2)^{n}}{3^{n}}$.
9. Determine whether the series converges or diverges. Justify your answer.
(a) $\frac{1}{3}-\cos \left(\frac{1}{3}\right)+\frac{1}{9}-\cos \left(\frac{1}{9}\right)+\frac{1}{27}-\cos \left(\frac{1}{27}\right)+\frac{1}{81}-$

$$
-\cos \left(\frac{1}{81}\right)+\cdots+3^{-n}-\cos \left(3^{-n}\right)+\cdots
$$

(b) $\sum_{n=1}^{\infty} \frac{\arctan n}{\sqrt[4]{n^{9}+8}}$
(c) $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n}\right)$
10. Determine whether each of the following series is absolutely convergent, conditionally convergent or divergent. Justify your answer.
(a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n!}{3^{n} n^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{2}+2}+n}$
11. Find the interval of convergence of the power series $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{(x-2)^{n}}{n \ln n}$.
12. Find the Taylor series for $f(x)=\cos (x)$ centered at $a=\frac{\pi}{2}$.
13. Suppose that the power series $\sum_{n=1}^{\infty} c_{n}(x-2)^{n}$ converges if $x=-2$ and diverges if $x=-3$.
(a) Does the series converge when $x=6$, or does it diverge, or could it either converge or diverge? Explain.
(b) Does the series $\sum_{n=1}^{\infty} c_{n}$ converge, or does it diverge, or could it either converge or diverge? Explain.
(c) Show that the series $\sum_{n=1}^{\infty} n c_{n}$ converges.

Answers:

1) a) $\frac{1}{6}\left[x^{3}+\sin \left(x^{3}\right) \cos \left(x^{3}\right)\right]+C$;
2) $y=\sin \left(\frac{\pi}{3}-\sqrt{1-x^{2}}\right)$;
3) $y=e^{x^{2} / 2-1}$;
b) $\frac{3}{13} e^{3 x} \sin 2 x-\frac{2}{13} e^{3 x} \cos 2 x+C$;
4) a) D (the limits of a_{n} when n is even and when n is odd are different); b) $\lim _{n \rightarrow \infty} a_{n}=-1 / 2$;
c) $-\ln |x-1|+\frac{3}{2} \ln \left|x^{2}-2 x+5\right|+\frac{1}{2} \tan ^{-1}\left(\frac{x-1}{2}\right)+C$;
5) $\pi / 6+4 / 15$;
d) $\frac{1}{81}\left[\frac{\sqrt{x^{2}-9}}{x}-\frac{\left(\sqrt{x^{2}-9}\right)^{3}}{3 x^{3}}\right]+C$; e) 3 ;
f) $4-4 \ln \left(\frac{3}{2}\right) ;$ g) $\ln 2 \cdot \ln |\ln | x||+\ln | x|+C$;
6) a) $\mathrm{D}(\mathrm{TD})$; b) $\mathrm{C}(\mathrm{CT})$; c) D (LCT or treat it as a telescoping series);
7) a) -4 ; b) $\pi / 3$;
8) a) AC; b) CC;
9) a) $1 / 8$; b) 1 ;
10) a) $\pi / 2-1$;
b) $V=\pi \int_{0}^{1}\left(\left(\frac{\pi}{2}\right)^{2}-\left(\frac{\pi}{2}-\arcsin x\right)^{2}\right) d x$;
11) $x \in(1,3]$; 12) $\sum_{n=0}^{\infty}(-1)^{n+1} \frac{(x-\pi / 2)^{2 n+1}}{(2 n+1)!}$;
12) a) could either converge or diverge; (6 is the endpoint of the Interval of Convergence)
c) $V=2 \pi \int_{0}^{1}(2-x) \arcsin x d x$;
b) C $(x=3 \in \mathrm{IoC})$; c) LCT with $\sum_{n=1}^{\infty} c_{n} 2^{n}$.
