1. Evaluate the following integrals.
(a) $\int \frac{5 x^{2}-3 x+10}{(x-2)\left(x^{2}+4\right)} d x$
(b) $\int_{0}^{\pi / 4} \frac{\sin ^{4} x}{\cos ^{6} x} d x$
(c) $\int \frac{\sqrt{x^{2}-25}}{x^{4}} d x$
(d) $\int e^{-x} \cos (3 x) d x$
(e) $\int_{0}^{9} \frac{1}{\sqrt{\sqrt{x}+1}} d x$
(f) $\int_{0}^{\ln 3} \frac{e^{x}}{\sqrt{15+2 e^{x}-e^{2 x}}} d x$
(g) $\int x \arcsin x d x$
2. Evaluate the following limits.
(7) 3. Determine whether the following improper integrals converge or diverge. If an integral converges, give its exact value.
(a) $\int_{-1}^{11} \frac{1}{\sqrt[3]{(x-3)^{4}}} d x$
(b) $\int_{0}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x$
(4) 4. Solve the differential equation: $\sqrt{1-x^{2}} \frac{d y}{d x}=x+x y^{2}$, with initial condition $y(0)=1$.
(3)
3. A rumour starts in a town with a population of 1000 . The rumour spreads at a rate proportional to the number of people who at time $t$ (in weeks) have not heard the rumour. Initially, 25 people heard the rumour and at the end of 3 weeks, 675 people had heard it. How many people will have heard the rumour at the end of 6 weeks?
(6) 6. Sketch $\mathcal{R}$, the region bounded by $y=\sin (x)$ and the $x$-axis with $x \in[0, \pi]$.

Set up, but do not evaluate, the integrals needed to find the volume of the solids of revolution obtained by revolving $\mathcal{R}$ about:
(a) the $x$-axis
(b) the line $x=-2$.
(c) the line $y=2$.
(4) 7. Find the length of the curve $y=\arcsin (x)+\sqrt{1-x^{2}}$ on its domain.
(4)
8. (a) Does the series $\sum_{n=1}^{\infty} \frac{3^{n}}{(2 n)!}$ converge? Justify your answer.
(b) Does the corresponding sequence $\left\{\frac{3^{n}}{(2 n)!}\right\}$ converge? Justify your answer.
9. Determine whether the following series converge or diverge. State the test you are using and display a proper solution.
(a) $\sum_{n=1}^{\infty} \frac{\arctan n}{\sqrt[3]{n^{2}+1}}$
(b) $\sum_{n=1}^{\infty}\left(\frac{n^{2}+1}{2 n^{2}+1}-\frac{3}{2^{n-1}}\right)$
(c) $\sum_{n=1}^{\infty} \frac{1}{3 n+n \cos ^{2} n}$
(3) 10. Find the sum of the following series:
$\sum_{n=1}^{\infty}\left(\cos ^{-1}\left(\frac{1}{n}\right)-\cos ^{-1}\left(\frac{1}{n+1}\right)\right)$
11. Determine whether the following series are absolutely convergent, conditionally convergent or or divergent. Justify your answer.
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{e^{1 / n^{2}}}{n}$
(b) $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{n+1}{3 n+5}\right)^{2 n}$
(4) 12. Find the radius and interval of convergence of the power series
$\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n+1}}{4^{n}}(x-3)^{n}$
(4) 13. Find the Maclaurin series expansion of $f(x)=\ln (x+2)$, and express the series using the appropriate sigma notation.

Answers

1. (a) $3 \ln |x-2|+\ln \left|x^{2}+4\right|+\frac{1}{2} \arctan \left(\frac{x}{2}\right)+C$
(b) $\frac{1}{5}$
(c) $\frac{1}{75}\left(\frac{\sqrt{x^{2}-25}}{x}\right)^{3}+C$
(d) $\frac{1}{10}\left(3 e^{-x} \sin (3 x)-e^{-x} \cos (3 x)\right)+C$
(e) $\frac{16}{3}$
(f) $\frac{\pi}{6}$
(g) $\frac{1}{2} x^{2} \arcsin x-\frac{1}{4} \arcsin x+\frac{1}{4} x \sqrt{1-x^{2}}+C$
2. (a) 8
(b) 1
(c) $e^{2}$
3. (a) Divergent
(b) 2
4. $y=\tan \left(-\sqrt{1-x^{2}}+\frac{\pi+4}{4}\right)$
5. 892
6. (a) Disk Method; $v=\int_{0}^{\pi} \pi \sin ^{2} x d x$
(b) Shell Method; $v=2 \pi \int_{0}^{\pi}(x+2) \sin x d x$
(c) Washer Method; $v=\pi \int_{0}^{\pi}\left(2^{2}-(2-\sin x)^{2}\right) d x$
7. 4
8. (a) Convergent by the Ratio Test
(b) Yes
9. (a) Divergent by L.C.T.
(b) Divergent by Test for Divergence
(c) Divergent by C.T.
10. $-\frac{\pi}{2}$
11. (a) Conditionally Convergent by A.S.T. and L.C.T.
(b) Absolutely Convergent by Root Test
12. Radius $=4$ and Interval of Convergence $x \in(-1,7)$
13. $\ln 2+\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{2^{n} n}$
