[Marks]

- 1. Evaluate the following integrals.
- (5) (a) $\int_0^1 \sqrt{2x x^2} \, dx$
- (5) (b) $\int \frac{1}{x^3} e^{\frac{1}{x}} dx$
- (5) (c) $\int \frac{1}{(x+1)(x^2+1)} dx$
- (5) (d) $\int \frac{\tan x}{\ln(\cos x)} dx$
- (5) (e) $\int x \tan^2 x \, dx$
- (5) (f) $\int (\arcsin x)^2 dx$
 - 2. Evaluate the following improper integrals.
- (4) (a) $\int_{-\infty}^{\infty} \frac{\arctan x}{1+x^2} \, dx$
- (4) (b) $\int_0^{\frac{\pi^2}{16}} \frac{\sin(\sqrt{x})}{\sqrt{x}} dx$
 - 3. Find the following limits
- (4) (a) $\lim_{x \to 0} (1+3x)^{2 \csc x}$
- (4) (b) $\lim_{x\to 0} \frac{x \ln(1+x)}{1-\cos x}$
- (4) 4. Solve the ordinary differential equation $x + 3y^2\sqrt{x^2 + 1}y' = 0$ with the initial condition y(0) = 1.
- (5) 5. Find the area enclosed by $y = \sin x$ and $y = \cos x$ between x = 0 and $x = \pi$.
- (5) 6. Sketch and shade the region \mathcal{R} enclosed by $y = x^3$, $y = \sqrt{x}$ between x = 0 and $x = \frac{1}{2}$.
 - (a) Set up but **do not evaluate** the integral for the volume of the solid obtained by rotating \mathcal{R} around the line y=2.
 - (b) Set up but **do not evaluate** the integral for the volume of the solid obtained by rotating \mathcal{R} around the line x = -2.
- (4) 7. Find the arc length of the curve $y = \ln(1-x^2)$ in the interval $0 \le x \le \frac{1}{2}$.
- (4) 8. Determine the convergence or divergence of the sequence $\{(-1)^n ne^{-n}\}$. Justify your answer.
- (4) 9. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+3)}$
- (9) 10. Determine whether the following series converge or diverge. Justify your answers.
 - (a) $\sum_{n=1}^{\infty} \frac{e^n}{1 + e^{2n}}$

[Marks]

(b)
$$\sum_{n=1}^{\infty} \left(\frac{2n+1}{3n+2} \right)^{\frac{n}{2}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{1}{n}\right)$$

(8) 11. Determine if the following series converge absolutely or converge conditionally or diverge. Justify your answers.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{n^3 + 1}}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{e^n}{(2n)!}$$

- (4) 12. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{2^n}{n} x^{2n}$.
- (4) 13. Find the Taylor series of $f(x) = e^{3x+1}$ at x = 2.
- (3) 14. Suppose there is a positive sequence $\{a_n\}_{n=1}^{\infty}$ which is decreasing and $\lim_{n\to\infty} a_n = 2$. Prove the series $\sum_{n=1}^{\infty} (-1)^n \frac{a_n}{n}$ converges.