1. Evaluate the following integrals.
(a) $\int_{0}^{1} \sqrt{2 x-x^{2}} d x$
(b) $\int \frac{1}{x^{3}} e^{\frac{1}{x}} d x$
(c) $\int \frac{1}{(x+1)\left(x^{2}+1\right)} d x$
(d) $\int \frac{\tan x}{\ln (\cos x)} d x$
(e) $\int x \tan ^{2} x d x$
(f) $\int(\arcsin x)^{2} d x$
2. Evaluate the following improper integrals.
(a) $\int_{-\infty}^{\infty} \frac{\arctan x}{1+x^{2}} d x$
(b) $\int_{0}^{\frac{\pi^{2}}{16}} \frac{\sin (\sqrt{x})}{\sqrt{x}} d x$
3. Find the following limits
(a) $\lim _{x \rightarrow 0}(1+3 x)^{2 \csc x}$
(b) $\lim _{x \rightarrow 0} \frac{x \ln (1+x)}{1-\cos x}$
(4) 4. Solve the ordinary differential equation $x+3 y^{2} \sqrt{x^{2}+1} y^{\prime}=0$ with the initial condition $y(0)=1$.
(5) 5. Find the area enclosed by $y=\sin x$ and $y=\cos x$ between $x=0$ and $x=\pi$.
(5) 6. Sketch and shade the region $\mathcal{R}$ enclosed by $y=x^{3}, y=\sqrt{x}$ between $x=0$ and $x=\frac{1}{2}$.
(a) Set up but do not evaluate the integral for the volume of the solid obtained by rotating $\mathcal{R}$ around the line $y=2$.
(b) Set up but do not evaluate the integral for the volume of the solid obtained by rotating $\mathcal{R}$ around the line $x=-2$.
(4) 7. Find the arc length of the curve $y=\ln \left(1-x^{2}\right)$ in the interval $0 \leq x \leq \frac{1}{2}$.
(4) 8. Determine the convergence or divergence of the sequence $\left\{(-1)^{n} n e^{-n}\right\}$. Justify your answer.
(4) 9. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+3)}$
(9) 10. Determine whether the following series converge or diverge. Justify your answers.
(a) $\sum_{n=1}^{\infty} \frac{e^{n}}{1+e^{2 n}}$
[Marks]
(b) $\sum_{n=1}^{\infty}\left(\frac{2 n+1}{3 n+2}\right)^{\frac{n}{2}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{1}{n}\right)$
(8) 11. Determine if the following series converge absolutely or converge conditionally or diverge. Justify your answers.
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{\sqrt{n^{3}+1}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{e^{n}}{(2 n)!}$
(4) 12. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{2^{n}}{n} x^{2 n}$.
(4) 13. Find the Taylor series of $f(x)=e^{3 x+1}$ at $x=2$.
(3) 14. Suppose there is a positive sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ which is decreasing and $\lim _{n \rightarrow \infty} a_{n}=2$. Prove the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{a_{n}}{n}$ converges.
