

December 14, 2020 09:00-11:00

CALCULUS II 201-NYB-05

Instructors:

Student name:	
STUDENT NUMBER:	
Instructor:	

Instructions

- 1. Write all of your solutions in this booklet and show all supporting work.
- 2. If the space provided is not sufficient, continue the solution on the opposite page.
- 3. Check that this booklet contains 2 pages, excluding this cover page.
- 4. Remember that the use of a calculator is not permitted.

1. Evaluate the following integrals.

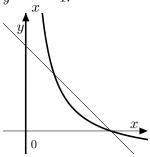
(5) (a)
$$\int \frac{2x+3}{(x-1)(x^2+4)} dx$$

(5) (b)
$$\int \frac{x}{\sqrt{6x - x^2}} dx$$

(5) (c)
$$\int_0^{\pi/3} x \sec^2 x \, dx$$

(5) (d)
$$\int \frac{\arcsin x}{\sqrt{1-x^2}} dx$$

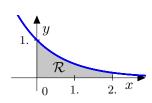
2. Evaluate the following limits.


(3) (a)
$$\lim_{x \to 0} \frac{x^2 e^x}{\tan^2 x}$$

(3) (b)
$$\lim_{x \to \infty} x^{1/\sqrt{x}}$$

(4) **3.** Determine whether the following improper integral converges or diverges. If the integral converges, give its exact value.

$$\int_0^{\pi/4} \frac{\sec^2 \theta}{\sqrt{1 - \tan \theta}} \ d\theta$$


(3) **4.** Set up, but **do not evaluate** the integral required to find the area enclosed by the curves, y = 3 - x and $y = \frac{3}{2} - 1$

5. Let \mathcal{R} be the region bounded by $y = e^{-x}$, x = 0 and x = 2. Set up, but **do not evaluate** the integral for the volume obtained by rotating the region \mathcal{R} about:

(2) (a) the
$$y$$
-axis.

(3) (b) the line
$$y = 3$$
.

(4) **6.** Solve the following differential equation, $\frac{dy}{dx} = \frac{xy^3}{\sqrt{1+x^2}}$ with initial condition y(0) = -1.

7. Determine whether the following sequences $\{a_n\}_1^{\infty}$ converge or diverge. In the case of convergence, find the limit

(3) (a)
$$\left\{ \arccos\left(\frac{-5n^2}{5n^2+4}\right) \right\}$$

(2) (b)
$$\left\{ \left(\frac{n^n}{n \cdot n!} \right) \right\}$$

8. Determine whether the following series are absolutely convergent, conditionally convergent or divergent. Justify your answer.

(3) (a)
$$\sum_{n=1}^{\infty} \frac{(-5)^n n!}{(2n+3)!}$$

(3) (b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{2n+5}}$$

(3) (c)
$$\sum_{n=1}^{\infty} \frac{\cos(2n)}{2^n + n}$$

- (4) 9. Given that $\sum_{n=1}^{\infty} a_n$ converges, determine if $\sum_{n=1}^{\infty} \frac{1}{a_n^2 + 2}$ converges or diverges. Justify your answer.
- (5) 10. Find the radius and interval of convergence for the following series,

$$\sum_{n=1}^{\infty} \frac{6^n (4x-1)^{n-1}}{n}$$

Answers Fall 2020

1. (a)
$$\ln|x-1| - \frac{1}{2}\ln|x^2+4| + \frac{1}{2}\arctan(x/2) + C$$

(b)
$$3\arcsin\left(\frac{x-3}{3}\right) - \sqrt{6x-x^2} + C$$

(c)
$$\frac{\sqrt{3}}{3}\pi - \ln 2$$

(d)
$$\frac{\arcsin^2(x)}{2} + C$$

(b) 1

3. Convergent; 2

4.
$$\int_{1}^{3} ((3-x)-(3/x-1)) dx$$

5. (a)
$$\int_0^2 2\pi x e^{-x} dx$$

(b)
$$\int_0^2 (\pi(3)^2 - \pi(3 - e^{-x})^2) dx$$

6.
$$-\sqrt{\frac{1}{3-2\sqrt{1+x^2}}}$$

- 7. (a) Convergent; π
 - (b) Divergent
- 8. (a) Absolutely convergent
 - (b) Conditionally convergent
 - (c) Absolutely convergent
- **9.** Diverges by test for divergence.
- **10.** Radius = 1/24; Interval $5/24 \le x < 7/24$