- 1. (10 points) Evaluate each improper integral, or show it diverges.
 - (a) $\int_0^\infty \frac{e^x}{1 + e^{2x}} dx$
 - (b) $\int_0^1 \frac{\ln(x)}{\sqrt{x}} dx$
- **2.** (5 points) Find the area of the region bounded by the curves $y = 4 3x x^2$ and y = 2 2x.
- **3.** (5 points) In the figure a shaded rectangle is divided into two regions, R_1 and R_2 , by the curve $y = \ln(x)$. Write down, but do not evaluate, an integral for the volume of the solid obtained by
 - (a) rotating R_1 about the y-axis
 - (b) rotating R_2 about the line y = -2.

- **4.** (4 points) Solve the differential equation $\frac{dy}{dx} = \frac{3-y}{\sqrt{1-x^2}}$ given y(0) = 5.
- **5.** (5 points) Determine whether the following sequences converge or diverge. In the case of convergence, find the limit.
 - (a) $\left\{ \left(\frac{n+2}{n} \right)^n \right\}$
 - (b) $\left\{ \frac{(2n+1)!}{n^2(2n-1)!} \right\}$
- **6.** (4 points) Consider the series given by $\sum_{m=1}^{\infty} \frac{1}{(m+2)(m+3)}.$
 - (a) Find a simple formula for the sequence of partial sums of this series.
 - (b) Does the series converge or diverge? If it converges find its sum.
- 7. (9 points) Determine whether the following series converge or diverge. Justify your answers.
 - (a) $\sum_{n=1}^{\infty} \frac{3^n + 2}{2^{2n}}$
 - (b) $\sum_{k=1}^{\infty} \frac{k+1}{e^k}$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln(n)}}$$

8. (8 points) Determine whether the following series are absolutely convergent, conditionally convergent, or divergent. Justify your answers.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{2n-1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2 + n + 1}$$

- **9.** (5 points) Determine the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(-1)^n}{5^n \sqrt{n+1}} (x-2)^n.$
- 10. (5 points) Find the Taylor series for $f(x) = \frac{1}{x-1}$ centered at 3. Write the first four terms of the series explicitly, and express the series using appropriate sigma notation.

Answers

- 1. (a) $\pi/4$
 - (b) -4
- 2. 9/2
- 3. (a) $\int_0^1 \pi e^{2y} dy$

(b)
$$\int_{1}^{e} \pi \left[(\ln x + 2)^{2} - 4 \right] dx$$

- 4. $y = 3 + 2e^{-\arcsin(x)}$
- 5. (a) e^2
 - (b) 4
- 6. (a) $s_n = \frac{1}{3} \frac{1}{n+3}$
 - (b) The series converges and its sum is 1/3.
- 7. (a) Converges (Series can be written as a sum of two converging geometric series.)

- (b) Converges (Result can be obtained by the Ratio Test.)
- (c) Diverges (Result can be obtained by the Integral Test.)
- 8. (a) Conditionally convergent (Series converges by the Alternating Series Test. Corresponding series diverges by the Limit Comparison Test with $\sum \frac{1}{n^{1/2}}$.)
 - (b) Absolutely convergent (Corresponding series converges by the Comparison Test with $\sum \frac{1}{n^2}$.)
- 9. (-3,7]
- 10. $\frac{1}{2} \frac{1}{2^2}(x-3) + \frac{1}{2^3}(x-3)^2 \frac{1}{2^4}(x-3)^3 + \cdots$ $= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}}(x-3)^n$