201-NYB-05: Calculus II Science
Final Examination - Winter 2022

Problems: 10.

1. (30 points) Evaluate the following integrals.
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2. (6 points) Evaluate the following limits. If using I’'Hospital’s
rule, justify why it may be used.
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3. (9 points) For each of the following improper integrals, either
evaluate it or show that it diverges.
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(9 points) Determine whether each of the following series con-
verges absolutely, converges conditionally, or diverges. Justify
your answers.
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. (2 points) If a series Zan converges conditionally and
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tify your answer.

. (5 points) Find the radius and interval of convergence of the
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(5 points) Find the Taylor series for f(z) = (1 —2z)~! centred
at z = —1.

Answers:
4. (a) (4 points) Sketch the region R bounded by the curves
y =+/z, =2 — y? and the z-axis, and find its area. 1. (a) 12/35 (b) z(Inz)? —2(zlnz—z)+C
(b) (3 points) Set up, but do not evaluate an integral rep- (c) arcsin (secx) Lc () 27 +3V/3
resenting the volume of the solid obtained by rotating the 3 6

region R from part (a) about the line z = 2.

5. (6 points) Solve the initial value problem
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Express y explicitly as a function of x.

6. According to Newton’s law of cooling, the rate of change dT'/dt
of the temperature of an object is proportional to the difference 5
between its temperature 7' and the ambient temperature T4.
Suppose that the ambient temperature of a large room is 20°C, 6
that the initial temperature of a small object in that room is
100°C, and that after 1 minute the object is observed to have

cooled to 60°C. 7.

(a) (4 points) Set up a differential equation representing this
situation and solve the initial value problem.

(b) (1 point) How long will it take for the object to cool to

30°C? For full marks, give the simplified exact answer. 9.

7. (4 points) Find the length of the curve y = In(cosx) between 10.

z=0and z =7/4

8. (6 points) For each of the following series, either find its sum, 17,

or show that it diverges. Justify your answers.
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9. (6 points) Determine whether each of the following series con-

verges or diverges. Justify your answers. 13.
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(a) T =80- (%)t+20

(b) 3 minutes.

(a) 16/7 (GST) (b) 2 — e — /e (TS)
(a) D (TFD/nTT) (b) D (DCT)
(a) AC (RT) (b) D (RoT)

(c) CC (LCT, AST)

By the ratio test, if lim|ap41/an| < 1 the series would con-
verges absolutely, whilst if lim |ap41/an| > 1, the series would
diverge. Since neither is the case, the only remaining possibility
is that lim |an+1/an| = 1.
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