201-NYB-05: Calculus II Science

Final Examination - Winter 2022

Problems:

1. (30 points) Evaluate the following integrals.
(a) $\int_{0}^{\pi / 4} \tan ^{4} \theta \sec ^{4} \theta d \theta$
(b) $\int(\ln x)^{2} d x$
(c) $\int \frac{\sec x \tan x}{\sqrt{9-\sec ^{2} x}} d x$
(d) $\int_{1}^{2} \sqrt{3+2 x-x^{2}} d x$
(e) $\int \frac{x^{4}+3 x^{2}+8}{x^{4}+4 x^{2}} d x$
2. (6 points) Evaluate the following limits. If using l'Hospital's rule, justify why it may be used.
(a) $\lim _{x \rightarrow 1} \frac{\sin (\ln x)-x+1}{(x-1)^{2}}$
(b) $\lim _{x \rightarrow-\infty}\left(1+e^{x}\right)^{e^{-x}}$
3. (9 points) For each of the following improper integrals, either evaluate it or show that it diverges.
(a) $\int_{0}^{\pi / 2} \cot x d x$
(b) $\int_{0}^{\infty} \frac{x}{e^{x}} d x$
4. (a) (4 points) Sketch the region \mathcal{R} bounded by the curves $y=\sqrt{x}, x=2-y^{2}$ and the x-axis, and find its area.
(b) (3 points) Set up, but do not evaluate an integral representing the volume of the solid obtained by rotating the region \mathcal{R} from part (a) about the line $x=2$.
5. (6 points) Solve the initial value problem

$$
\frac{y^{\prime}}{y}-2 x \sqrt{y^{2}-1}=0, \quad y(0)=2
$$

Express y explicitly as a function of x.
6. According to Newton's law of cooling, the rate of change $d T / d t$ of the temperature of an object is proportional to the difference between its temperature T and the ambient temperature T_{A}. Suppose that the ambient temperature of a large room is $20^{\circ} \mathrm{C}$, that the initial temperature of a small object in that room is $100^{\circ} \mathrm{C}$, and that after 1 minute the object is observed to have cooled to $60^{\circ} \mathrm{C}$.
(a) (4 points) Set up a differential equation representing this situation and solve the initial value problem.
(b) (1 point) How long will it take for the object to cool to $30^{\circ} \mathrm{C}$? For full marks, give the simplified exact answer.
7. (4 points) Find the length of the curve $y=\ln (\cos x)$ between $x=0$ and $x=\pi / 4$.
8. (6 points) For each of the following series, either find its sum, or show that it diverges. Justify your answers.
(a) $4-3+\frac{9}{4}-\frac{27}{16}+\frac{81}{64}-\cdots$
(b) $\sum_{n=2}^{\infty}\left(e^{1 /(n+1)}-e^{1 /(n-1)}\right)$
9. (6 points) Determine whether each of the following series converges or diverges. Justify your answers.
(a) $\sum_{n=1}^{\infty} \frac{\arctan (n)}{1-e^{-n}}$
(b) $\sum_{n=2}^{\infty} \frac{3-\cos ^{2} n}{n-1}$
10. (9 points) Determine whether each of the following series converges absolutely, converges conditionally, or diverges. Justify your answers.
(a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{3^{n} \cdot(2 n)!}$
(b) $\sum_{n=1}^{\infty}(-2 n)^{n}[\sin (1 / n)]^{n}$
(c) $\sum_{n=3}^{\infty}(-1)^{n} \frac{n}{n^{2}+4}$
11. (2 points) If a series $\sum_{n=1}^{\infty} a_{n}$ converges conditionally and $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists, what can we say about $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$? Justify your answer.
12. (5 points) Find the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n^{3} \cdot 2^{n+1}}$.
13. (5 points) Find the Taylor series for $f(x)=(1-2 x)^{-1}$ centred at $x=-1$.

Answers:

1. (a) $12 / 35$
(b) $x(\ln x)^{2}-2(x \ln x-x)+C$
(c) $\arcsin \left(\frac{\sec x}{3}\right)+C$
(d) $\frac{2 \pi+3 \sqrt{3}}{6}$
(e) $x-\frac{2}{x}-\frac{3}{2} \arctan \left(\frac{x}{2}\right)+C$
2. (a) $-1 / 2$
(b) e
3. (a) Diverges (to ∞).
(b) Converges to 1 .
4. (a) $4 / 3$
(b) $V=\pi \int_{0}^{1}\left(\left(2-y^{2}\right)^{2}-y^{4}\right) d y$
5. $y=\sec \left(x^{2}+\pi / 3\right)$
6. $\ln (\sqrt{2}+1)$
7. (a) $T=80 \cdot\left(\frac{1}{2}\right)^{t}+20$
(b) 3 minutes.
8. (a) $16 / 7$ (GST)
(b) $2-e-\sqrt{e}(\mathrm{TS})$
9. (a) $\mathrm{D}(\mathrm{TFD} / \mathrm{nTT})$
(b) $\mathrm{D}(\mathrm{DCT})$
10.

(a) $\mathrm{AC}(\mathrm{RT})$
(b) $\mathrm{D}(\mathrm{RoT})$
(c) $\mathrm{CC}(\mathrm{LCT}, \mathrm{AST})$
11. By the ratio test, if $\lim \left|a_{n+1} / a_{n}\right|<1$ the series would converges absolutely, whilst if $\lim \left|a_{n+1} / a_{n}\right|>1$, the series would diverge. Since neither is the case, the only remaining possibility is that $\lim \left|a_{n+1} / a_{n}\right|=1$.
12. $R=2, \quad I=[0,4]$
13. $T(x)=\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n+1}}(x+1)^{n}$

