[Marks]

1. Given $f(x) = arc \sec \sqrt{x^2 + 1}$, assuming x > 0

[3]

- a. Find $\frac{dy}{dx}$
- b. Simplify your answer.
- 2. Evaluate the integrals.

[30]

a.
$$\int x \sqrt[3]{x-1} \ dx$$

- b. $\int_{2/5}^{4/5} \frac{\sqrt{25x^2 4}}{x} \, dx$
- c. $\int t^2 \arcsin t \, dt$
- d. $\int (a + \tan x)^2 dx$
- e. $\int \frac{dx}{\sqrt{2x-x^2}}$
- f. $\int \frac{x^2 + 2x + 5}{x^2(x^2 + 1)} dx$
- 3. Evaluate the improper integrals.

[12]

a.
$$\int_{-\infty}^{\infty} \frac{1}{4+x^2} \, dx$$

b.
$$\int_0^2 \frac{1}{(x-1)^2} dx$$

- c. For what value(s) of p is $\int_{1}^{\infty} \frac{1}{x^{2p}} dx$ convergent? Justify your answer.
- 4. Evaluate the limits.

[6]

[4]

a.
$$\lim_{\theta \to 0} \frac{2\theta - \sin(2\theta)}{\theta - \sin(\theta)}$$

- b. $\lim_{x \to 0^+} (1 + \sin(2x))^{1/x}$
- 5. Find the area of the region bounded by $y = \frac{4}{x}$ and y = 5 x
- 6. In the diagram below, there are two triangular regions. [7]
 - Let \mathcal{R} be the triangular region in Quadrant I (region bounded by the graph y = x and $y = \frac{x}{3}$, between x = 0 and x = 2)

• Let S be the triangular region in quadrant III (region bounded by the graph $y = \frac{x}{3}$, y = x and y = -1)

In each part below express (do not evaluate) using one integral, the volume of the solid of revolution obtained by rotating y

- a. The region \mathcal{R} about the y axis
- b. The region S about the line x = 3

- 7. Find the length of the curve $y = 2x^{3/2} + 1$ from x = 0 to $x = \frac{1}{3}$ [4]
- 8. A tank contains 50 kg of salt dissolved in 1500L of water. Pure water enters the tank at a rate of 10 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. [4]
 - a. How much salt is in the tank after t minutes
 - b. How much salt is in the tank after 150 minutes?
- 9. Given $a_n = \frac{3n^2 + \sin(n)}{5n^2 + n}$ [3]
 - a. Does the sequence converge? Justify your answer
 - b. Does $\sum_{n=1}^{\infty} a_n$ converge?
- 10. Determine whether each of the following series converges or diverges. Justify your answer. [6]

a.
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3 + 1}}$$

b.
$$\sum_{n=1}^{\infty} \left(1 - \cos \left(\frac{\pi}{2n} \right) \right)^n$$

11. Determine whether each of the following series is absolutely convergent, conditionally convergent or divergent.

Justify your answer.

[6]

a.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln(n+1)}{n+1}$$

b.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n!}$$

12. Determine whether each of the following series converges or diverges. If it converges find the sum [5]

a.
$$\sum_{n=0}^{\infty} \frac{2^{n+1} + 7^n}{3^n}$$

b.
$$\sum_{n=2}^{\infty} \frac{1}{(n-1)(n+1)}$$

13. Find a formula for the n^{th} term of the Taylor series for $f(x) = \ln(1+x)$ centered at 1 [5]

14. Determine the radius and the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{n(x-2)^n}{n^2+1}$ [5]

Answers:

1) a)
$$\frac{1}{\sqrt{x^2+1}} \sqrt{\left(\sqrt{x^2+1}\right)^2 - 1} \cdot \frac{1}{2\sqrt{x^2+1}} \cdot 2x$$
; b) $\frac{1}{x^2+1}$.

2) a)
$$\frac{3}{7}(x-1)^{7/3} + \frac{3}{4}(x-1)^{4/3} + c$$
; b) $2\left(\sqrt{3} - \frac{\pi}{3}\right)$; c) $\frac{t^3}{3}\arcsin t + \frac{\sqrt{1-t^2}}{9}(t^2+2) + c$
d) $(a^2-1)x + 2a\ln|\sec x| + \tan x + c$; e) $\arcsin(x-1) + c$; f) $2\ln|x| - \frac{5}{x} - \ln(x^2+1) - 4\arctan x + c$

3) a)
$$\frac{\pi}{2}$$
; b) The integral diverge; c) $p > \frac{1}{2}$

4) a) 8; b)
$$e^2$$
; 5) $\frac{15}{2} - 8 \ln 2 \ units^2$; 6) a) $2\pi \int_0^2 x \left(x - \frac{x}{3}\right) dx$; b) $\pi \int_{-1}^0 \left[(3 - 3y)^2 - (3 - y)^2 \right] dy$

7)
$$\frac{14}{27}$$
; 8)a) $y = 50e^{-t/150}$; b) $y = \frac{50}{e}$ kg; 9)a) $\frac{3}{5}$; b) The integral diverge by divergence test

10) a) Series Diverge by the Limit comparison test; b) The series converge by the Root test

11) a) The series is conditionally convergent (converge by A.S.T., $|a_n|$ diverge by limit comparison test)

b) Absolutely convergent by Ratio test; 12) Geometric series with $r = \frac{7}{3} > 1$, so it diverge

b) telescoping sum
$$S_n = \frac{3}{4} - \frac{1}{n+1}$$
 which converge with a sum $= \frac{3}{4}$; 13) $\ln 2 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-1)^n}{2^n n}$

14) Radius of convergence = 1, interval of convergence $1 \le x < 3$.