1. Given $f(x)=\operatorname{arcsec} \sqrt{x^{2}+1}$, assuming $x>0$
a. Find $\frac{d y}{d x}$
b. Simplify your answer.
2. Evaluate the integrals.
a. $\int x \sqrt[3]{x-1} d x$
b. $\int_{2 / 5}^{4 / 5} \frac{\sqrt{25 x^{2}-4}}{x} d x$
c. $\int t^{2} \arcsin t d t$
d. $\int(a+\tan x)^{2} d x$
e. $\int \frac{d x}{\sqrt{2 x-x^{2}}}$
f. $\int \frac{x^{2}+2 x+5}{x^{2}\left(x^{2}+1\right)} d x$
3. Evaluate the improper integrals.
a. $\int_{-\infty}^{\infty} \frac{1}{4+x^{2}} d x$
b. $\int_{0}^{2} \frac{1}{(x-1)^{2}} d x$
c. For what value(s) of p is $\int_{1}^{\infty} \frac{1}{x^{2 p}} d x$ convergent? Justify your answer.
4. Evaluate the limits.
a. $\lim _{\theta \rightarrow 0} \frac{2 \theta-\sin (2 \theta)}{\theta-\sin (\theta)}$
b. $\lim _{x \rightarrow 0^{+}}(1+\sin (2 x))^{1 / x}$
5. Find the area of the region bounded by $y=\frac{4}{x}$ and $y=5-x$
6. In the diagram below, there are two triangular regions.

- Let \mathscr{R} be the triangular region in Quadrant I (region bounded by the graph $y=x$ and $y=\frac{x}{3}$, between $x=0$ and $x=2$)
- Let S be the triangular region in quadrant III (region bounded by the graph $y=\frac{x}{3}, y=x$ and $y=-1$)

In each part below express (do not evaluate) using one integral , the volume of the solid of revolution obtained by rotating
a. The region \mathcal{R} about the y axis
b. The region S about the line $x=3$

7. Find the length of the curve $y=2 x^{3 / 2}+1$ from $x=0$ to $x=\frac{1}{3}$
8. A tank contains 50 kg of salt dissolved in 1500 L of water. Pure water enters the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same rate.
a. How much salt is in the tank after t minutes
b. How much salt is in the tank after 150 minutes?
9. Given $a_{n}=\frac{3 n^{2}+\sin (n)}{5 n^{2}+n}$
a. Does the sequence converge? Justify your answer
b. Does $\sum_{n=1}^{\infty} a_{n}$ converge?
10. Determine whether each of the following series converges or diverges. Justify your answer.
a. $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{3}+1}}$
b. $\sum_{n=1}^{\infty}\left(1-\cos \left(\frac{\pi}{2 n}\right)\right)^{n}$
11. Determine whether each of the following series is absolutely convergent, conditionally convergent or divergent. Justify your answer.
a. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln (n+1)}{n+1}$
b. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n^{2}}{n!}$
12. Determine whether each of the following series converges or diverges. If it converges find the sum
a. $\sum_{n=0}^{\infty} \frac{2^{n+1}+7^{n}}{3^{n}}$
b. $\sum_{n=2}^{\infty} \frac{1}{(n-1)(n+1)}$
13. Find a formula for the $n^{\text {th }}$ term of the Taylor series for $f(x)=\ln (1+x)$ centered at 1
14. Determine the radius and the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{n(x-2)^{n}}{n^{2}+1}$

Answers:

1) a

b) $\frac{1}{x^{2}+1}$.
2) a) $\frac{3}{7}(x-1)^{7 / 3}+\frac{3}{4}(x-1)^{4 / 3}+c$;
b) $2\left(\sqrt{3}-\frac{\pi}{3}\right)$;
c) $\frac{t^{3}}{3} \arcsin t+\frac{\sqrt{1-t^{2}}}{9}\left(t^{2}+2\right)+c$
d) $\left(a^{2}-1\right) x+2 a \ln |\sec x|+\tan x+c$;
e) $\arcsin (x-1)+c$;
f) $2 \ln |x|-\frac{5}{x}-\ln \left(x^{2}+1\right)-4 \arctan x+c$
3) a) $\frac{\pi}{2}$;
b) The integral diverge;
c) $p>\frac{1}{2}$
4) a) 8 ;
b) e^{2}; 5) $\frac{15}{2}-8 \ln 2$ units 2; 6)a) $2 \pi \int_{0}^{2} x\left(x-\frac{x}{3}\right) d x$;
b) $\pi \int_{-1}^{0}\left[(3-3 y)^{2}-(3-y)^{2}\right] d y$
5) $\frac{14}{27}$;
6) a) $y=50 e^{-t / 150}$;
b) $y=\frac{50}{e} \mathrm{~kg} ; \quad$ 9)a) $\frac{3}{5}$;
b) The integral diverge by divergence test
7) a) Series Diverge by the Limit comparison test;
b) The series converge by the Root test
8) a) The series is conditionally convergent (converge by A.S.T. , $\left|a_{n}\right|$ diverge by limit comparison test)
b) Absolutely convergent by Ratio test; 12) Geometric series with $r=\frac{7}{3}>1$, so it diverge
b) telescoping sum $S_{n}=\frac{3}{4}-\frac{1}{n+1}$ which converge with a sum $=\frac{3}{4}$;
9) $\ln 2+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(x-1)^{n}}{2^{n} n}$
10) Radius of convergence $=1$, interval of convergence $1 \leq x<3$.
