1. (35 points) Evaluate the following integrals.
(a) $\int_{\sqrt{2}}^{2} \frac{3}{x \sqrt{x^{2}-1}} d x$
(b) $\int \frac{x e^{x}}{\sqrt{x e^{x}-e^{x}}} d x$
(c) $\int \frac{\ln x}{x^{3}} d x$
(d) $\int \sec x \tan ^{5} x d x$
(e) $\int \frac{x^{2}}{\sqrt{16-x^{2}}} d x$
(f) $\int \frac{x-6}{x^{3}(x-2)} d x$
(g) $\int_{0}^{\pi / 2} \frac{\cos ^{3} x}{1+\sin ^{2} x} d x$
2. (6 points) Evaluate the following limits.
(a) $\lim _{x \rightarrow \infty} x(\arctan (3 x)-\pi / 2)$
(b) $\lim _{x \rightarrow 0^{+}}(\sec x+\tan x)^{1 / x}$
3. (8 points) Evaluate each improper integral or show it diverges.

$$
\begin{aligned}
& \text { (a) } \int_{0}^{1} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x \\
& \text { (b) } \int_{3}^{\infty} \frac{1}{\sqrt[5]{x-2}} d x
\end{aligned}
$$

4. (5 points) The figure below shows the graphs of the functions $y=2 x \cos x$ and $y=x$. Find the area of the shaded region \mathcal{R}.

5. (4 points) Let \mathcal{R} be the region bounded by $x=2 \sqrt{y}$, $x=y+2, y=0$, and $y=4$ (see figure). Set up, but do not evaluate, the integral for the volume of the solid obtained by rotating \mathcal{R} around:
(a) the x-axis
(b) the vertical line $x=-1$

6. (5 points) Find the length of the curve $y=\frac{x^{3}}{12}+\frac{1}{x}$, $1 \leqslant x \leqslant 2$.
7. (5 points) Express y as a function of x if $\frac{d y}{d x}=\frac{x}{x^{2} y+y}$ and $y=-4$ if $x=0$.
8. (3 points) Let $f(x)=\sin \left(\frac{1}{2} x\right)$. Let $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ be the sequence defined by $a_{n}=f^{(n)}(0)$, where $f^{(n)}$ is the $n^{\text {th }}$ derivative of f.
(a) Find the first five terms of $\left\{a_{n}\right\}$.
(b) Does the sequence converge or diverge? If it converges, find the limit. Justify your answer.
9. (3 points) Let $\sum_{n=1}^{\infty} a_{n}$ be the series whose $n^{\text {th }}$ partial sum is $s_{n}=\frac{5 n}{2 n+1}$.
(a) Evaluate $\sum_{n=1}^{\infty} a_{n}$.
(b) Find a_{3}.
10. (9 points) Determine whether the series converges or diverges. Justify your answer.
(a) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{3 n}$
(b) $\sum_{n=1}^{\infty} \frac{5^{n}+7^{n}}{2^{n}+9^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n \sqrt{n+1}}$
11. Determine whether the series is absolutely convergent, conditionally convergent, or divergent. Justify your answer.
(a) (3 points) $\sum_{n=1}^{\infty}(-1)^{n} \frac{3^{n}}{(2 n)!}$
(b) (4 points) $\sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{1}{n}\right)$
12. (4 points) Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(2 x-3)^{n}}{3^{n} \sqrt{2 n+3}}$.
13. (4 points) Find the Maclaurin series of $f(x)=\frac{1}{\sqrt{2 x+1}}$.
14. (2 points) (a) Given that $\sum a_{n}$ is a convergent series of positive terms, prove that $\sum\left(a_{n}\right)^{2}$ is also convergent.
(b) Give an example of a series $\sum a_{n}$ such that $\sum a_{n}$ is convergent but $\sum\left(a_{n}\right)^{2}$ is divergent.
15. (a) $3 \operatorname{arcsec} x]_{\sqrt{2}}^{2}=\frac{1}{4} \pi$
(b) $2 \sqrt{x e^{x}-e^{x}}+C$
(c) $-\frac{2 \ln x+1}{4 x^{2}}+C$
(d) $\frac{1}{5} \sec ^{5} x-\frac{2}{3} \sec ^{3} x+\sec x+C$
(e) $8 \arcsin \left(\frac{1}{4} x\right)-\frac{1}{2} x \sqrt{16-x^{2}}+C$
(f) $\frac{1}{2} \ln |x|-\frac{1}{x}-\frac{3}{2 x^{2}}-\frac{1}{2} \ln |x-2|+C$
(g) Letting $u=\sin x$, the integral equals

$$
2 \arctan u-u]_{0}^{1}=\frac{1}{2} \pi-1
$$

2. (a) $-\frac{1}{3} \quad$ (b) e
3. (a) Converges to $2(e-1)$
(b) Diverges (to ∞)
4. $\int_{0}^{\pi / 3}(2 x \cos x-x) d x=\frac{1}{3} \pi \sqrt{3}-1-\frac{1}{18} \pi^{2}$
5. (a) $\int_{0}^{4} 2 \pi y(y+2-2 \sqrt{y}) d y$
(b) $\int_{0}^{4} \pi\left[(y+3)^{2}-(2 \sqrt{y}+1)^{2}\right] d y$
6. $\frac{13}{12}$
7. $y=-\sqrt{\ln \left(x^{2}+1\right)+16}$
8. (a) $\left\{a_{n}\right\}=\left\{\frac{1}{2}, 0,-\frac{1}{8}, 0, \frac{1}{32}, \ldots\right\}$
(b) Since $a_{n}=0$ if n is even and $a_{n}=(-1)^{(n-1) / 2}\left(\frac{1}{2}\right)^{n}$ if n is odd, we clearly have

$$
0 \leqslant\left|a_{n}\right| \leqslant\left(\frac{1}{2}\right)^{n} \quad \text { for all } n
$$

Now apply the Squeeze Theorem:

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n}=0 \Longrightarrow \lim _{n \rightarrow \infty}\left|a_{n}\right|=0
$$

and conclude that $\lim _{n \rightarrow \infty} a_{n}=0$ as well.
9. (a) $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\frac{5}{2}$
(b) $a_{3}=s_{3}-s_{2}=\frac{1}{7}$
10. Let a_{n} be the nth term of the series in question.
(a) Diverges by the test for divergence:

$$
a_{n}=\left[\left(1+\frac{1}{n}\right)^{n}\right]^{3} \longrightarrow e^{3} \neq 0 \quad \text { as } n \rightarrow \infty
$$

(Or simply note that since $a_{n}>1$ for all n, we clearly have $\lim _{n \rightarrow \infty} a_{n} \neq 0$.)
(b) Converges by the direct comparison test:
$a_{n}=\frac{5^{n}}{2^{n}+9^{n}}+\frac{7^{n}}{2^{n}+9^{n}}<\frac{5^{n}}{9^{n}}+\frac{7^{n}}{9^{n}}=\left(\frac{5}{9}\right)^{n}+\left(\frac{7}{9}\right)^{n}=b_{n}$
and $\sum b_{n}$ converges because it is the sum of two convergent geometric series $\left(\left|\frac{5}{9}\right|<1,\left|\frac{7}{9}\right|<1\right)$.
Alternatively, we can use the limit comparison test. Let $b_{n}=\left(\frac{7}{9}\right)^{n}$. Then $\sum b_{n}$ converges and

$$
\frac{a_{n}}{b_{n}}=\frac{\left(\frac{5}{7}\right)^{n}+1}{\left(\frac{2}{9}\right)^{n}+1} \longrightarrow 1 \neq 0, \infty \quad \text { as } n \rightarrow \infty
$$

(c) Converges by the direct comparison test. Since $-1 \leqslant \cos n \leqslant 1, \cos ^{2} n \leqslant 1$. Therefore

$$
a_{n} \leqslant \frac{1}{n \sqrt{n+1}}<\frac{1}{n \sqrt{n}}=\frac{1}{n^{3 / 2}}=b_{n}
$$

and $\sum b_{n}$ is a convergent p-series $\left(p=\frac{3}{2}>1\right)$.
11. Let a_{n} be the nth term of the series in question.
(a) Converges absolutely by the ratio test:

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{3}{(2 n+2)(2 n+1)} \longrightarrow 0<1
$$

(b) Converges conditionally. $\sum\left|a_{n}\right|=\sum \sin (1 / n)$ diverges by limit comparison with $\sum 1 / n$:

$$
\lim _{n \rightarrow \infty} \frac{\sin (1 / n)}{1 / n}=\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \neq 0, \infty
$$

On the other hand, $\sin (1 / n) \rightarrow 0$ as $n \rightarrow \infty$ and is decreasing, so $\sum a_{n}$ converges by the alternating series test.
12. $R=\frac{3}{2},[0,3)$
13. $1+\sum_{n=1}^{\infty} \frac{(-1)^{n} 1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n!} x^{n}$
14. (a) Since $\sum a_{n}$ is convergent, $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, and so $a_{n} \leqslant 1$ for all sufficiently large n. Multiplying both sides of this inequality by $a_{n}>0$ shows that

$$
\left(a_{n}\right)^{2} \leqslant a_{n} \quad \text { for all sufficiently large } n
$$

so $\sum\left(a_{n}\right)^{2}$ converges by direct comparison with $\sum a_{n}$.
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ converges (alternating series test) but

$$
\sum_{n=1}^{\infty}\left[\frac{(-1)^{n}}{\sqrt{n}}\right]^{2}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

diverges.

