1. (30 points) Evaluate the following integrals.
(a) $\int \frac{x^{2}-x+13}{(x+1)\left(x^{2}+4\right)} d x$
(b) $\int e^{-2 x} \sin (3 x) d x$
(c) $\int_{3}^{4} \frac{\tan ^{3}(\pi / x)}{x^{2}} d x$
(d) $\int \frac{1}{x^{4} \sqrt{x^{2}-1}} d x$
(e) $\int \frac{1}{x \sqrt{2 x-9}} d x$
(f) $\int x^{5} e^{-x^{2}} d x$
2. (8 points) Evaluate each of the following limits.
(a) $\lim _{x \rightarrow \infty} \frac{\arctan (2 x)-\pi / 2}{\sin (1 / x)}$
(b) $\lim _{x \rightarrow 0}\left(1+\sin ^{2} x\right)^{4 / x^{2}}$
3. (8 points) Evaluate each of the following improper integrals.
(a) $\int_{-1}^{0} \frac{e^{1 / x}}{x^{2}} d x$
(b) $\int_{e^{2}}^{\infty} \frac{\ln x}{(x \ln x-x)^{2}} d x$
4. (4 points) Find the length of the curve $y=\frac{1}{2} x^{2}-\frac{1}{4} \ln x$ on the interval $\left[1, e^{2}\right]$.
5. (9 points) Let \Re be the region bounded by $y=\sqrt{x}$ and $y=\frac{1}{8} x^{2}$.

Set up, but do not evaluate, the integral needed to find:
(a) The area of \Re.
(b) The volume of the solid of revolution obtained by rotating \Re about:
(i) The y-axis.
(ii) The x-axis.
(iii) The line $x=-2$.
6. (4 points) Find an explicit solution of the differential equation.

$$
\left(x y^{2}+x\right)+\left(x^{2} y-y\right) \frac{d y}{d x}=0 \quad, \quad y(0)=-2
$$

7. (4 points) A tank initially contains 100 L of water in which 25 g of salt has been dissolved. Pure water enters the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at rate of $5 \mathrm{~L} / \mathrm{min}$. How much salt is in the tank after 20 minutes?
8. (3 points) Given the sequence $\left\{\frac{2}{1}, \frac{4}{2}, \frac{8}{6}, \frac{16}{24}, \frac{32}{120}, \frac{64}{720}, \ldots\right\}$
(a) Find a formula for the general term a_{n}.
(b) Determine whether the sequence is convergent or divergent.
9. (9 points) Determine whether the following series converge or diverge.
(a) $\sum_{n=1}^{\infty} \frac{e^{3 / n^{2}}}{n}$
(b) $\sum_{n=1}^{\infty}\left(\frac{4 n-1}{25 n+1}\right)^{n / 2}$
(c) $\sum_{n=1}^{\infty} \frac{n}{2 n+1} \cos (3 / n)$
10. (8 points) Determine whether the following series are absolutely convergent, conditionally convergent, or divergent.
(a) $\sum_{n=2}^{\infty}(-1)^{n} \frac{\ln n}{\sqrt{n}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 n)^{2 n}}{(2 n)!}$
11. (4 points) Find the radius and interval of convergence of the power series.

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{(x+2)^{n}}{5^{n} \sqrt{n+1}}
$$

12. (4 points) Let $f(x)=\frac{1}{(1-2 x)^{2}}$.
(a) Find the first 5 terms of the Maclaurin series of $f(x)$.
(b) Express the Maclaurin series of $f(x)$ in summation notation.
13. (5 points) (a) Given that $\int f(x) d x=x \arccos (5 x)-\frac{1}{5} \sqrt{1-25 x^{2}}+C$, find $f(x)$.
(b) Show (without actually calculating it) that the area under the curve $y=e^{\sqrt{x}}$ on the interval $[0,1]$ is the same as the area under the curve $y=e^{\sin x} \sin (2 x)$ on the interval $\left[0, \frac{\pi}{2}\right]$.
(c) Answer True or False (briefly justify).
(i) If $a_{n}>0$ and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ converges.
(ii) If $a_{n}>0$ and $\lim _{n \rightarrow \infty} n^{2} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ converges.

Answers

1.(a) $3 \ln |x+1|-\ln \left(x^{2}+4\right)+\frac{1}{2} \arctan \left(\frac{x}{2}\right)+C$
(b) $\frac{-1}{13}\left(3 e^{-2 x} \cos (3 x)+2 e^{-2 x} \sin 3 x\right)+C$
(c) $\frac{2-\ln 2}{2 \pi}$
(d) $\frac{\sqrt{x^{2}-1}}{x}-\frac{1}{3}\left(\frac{\sqrt{x^{2}-1}}{x}\right)^{3}+C$
(e) $\frac{2}{3} \arctan \left(\frac{\sqrt{2 x-9}}{3}\right)+C$
(f) $\frac{1}{2}\left[-x^{4} e^{-x^{2}}-2\left(x^{2} e^{-x^{2}}+e^{-x^{2}}\right)\right]+C$
2.(a) $-\frac{1}{2}$
(b) e^{4}
3.(a) $\frac{1}{e}$
(b) $\frac{1}{e^{2}}$
4. $\frac{e^{4}}{2}$
5.(a) $\int_{0}^{4} \sqrt{x}-\frac{1}{8} x^{2} d x$
(b)(i) $2 \pi \int_{0}^{4} x\left(\sqrt{x}-\frac{1}{8} x^{2}\right) d x$
(ii) $\pi \int_{0}^{4}(\sqrt{x})^{2}-\left(\frac{1}{8} x^{2}\right)^{2} d x$
(iii) $2 \pi \int_{0}^{4}(2+x)\left(\sqrt{x}-\frac{1}{8} x^{2}\right) d x$
6. $y=-\sqrt{\frac{5}{1-x^{2}}-1}$
7. $\frac{25}{e}$
8.(a) $a_{n}=\frac{2^{n}}{n!}$
(b) Conv. to 0
9.(a) Div. by comp. with $\sum \frac{1}{n}$
(b) Conv. by Root Test
(c) Div. by Div. Test
10.(a) Cond. conv.
(b) Div.
11. $R=5$, IC: $-7<x \leqslant 3$
12. $\sum_{n=0}^{\infty}(n+1) 2^{n} x^{n}$
13. (a) $\arccos (5 x)$
(b) Hint: Show subs. $u=\sqrt{x}$ for $\int_{0}^{1} e^{\sqrt{x}} d x$ gives the same as subs. $u=\sin x$ for $\int_{0}^{\pi / 2} e^{\sin x} \sin (2 x) d x$
(c)(i) False (ii)True

