Answers to NYC exam, fall 2010

1. (a) The reduced row echelom form of the augmented matrix $[A|\mathbf{b}]$ is

$$\left[\begin{array}{ccccc} 1 & 0 & 0 & 4 & -2 \\ 0 & 1 & 0 & 3 & 5 \\ 0 & 0 & 1 & -1 & 7 \end{array}\right].$$

Let
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
. Introduce a parameter t for the free variable x_4 .

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \\ 7 \\ 0 \end{bmatrix} + t \begin{bmatrix} -4 \\ -3 \\ 1 \\ 1 \end{bmatrix}, \qquad t \in \mathbb{R}.$$

(b)
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 11 \\ 5 \\ -2 \end{bmatrix}.$$

$$\left\{ \begin{bmatrix} -4 \\ -3 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

- 2. (a) $a \neq -3$ and $b \neq 3$
 - (b) Either both $a \neq -3$ and b=3 or both a=-3 and $b\neq 3$
 - (c) a = -3 and b = 3
- 3. (a)

$$A^{-1} = \left[\begin{array}{rrr} 9 & -26 & -2 \\ 21 & -63 & -5 \\ -4 & 12 & 1 \end{array} \right].$$

(b)
$$\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -15 \\ -40 \\ 8 \end{bmatrix}.$$

4. (a)
$$M^{-1} = \begin{bmatrix} -A^{-1}CB^{-1} & A^{-1} & O \\ B^{-1} & O & O \\ O & O & D^{-1} \end{bmatrix}.$$

- (b) A, B and D.
- 5. Introduce variables x_1, x_2, x_3, x_4 to balance

$$x_1 \operatorname{Ca}(OH)_2 + x_2 \operatorname{H}_3 PO_4 \rightarrow x_3 \operatorname{Ca}_3(PO_4)_2 + x_4 \operatorname{H}_2 O.$$

The augmented matrix for the system is

$$\begin{bmatrix}
Ca & 1 & 0 & -3 & 0 & 0 \\
O & 2 & 4 & -8 & -1 & 0 \\
H & 2 & 3 & 0 & -2 & 0 \\
O & 1 & -2 & 0 & 0
\end{bmatrix}$$

 x_1 x_2 x_3 x_4

6. (a)
$$\frac{256}{-5}$$
 (b)

- (c) Not enough information
- 7. (a) $1 = |I_n| = |AB^TC^{-1}| = |A||B||C^{-1}|$, and so $|A| \neq 0$ and $|B| \neq 0$. Therefore A and B are invertible.

-5

(b) Yes, since $B^TC^{-1} = A^{-1}$ and A commutes with its inverse.

(c)
$$B^{-1} = A^T (C^{-1})^T$$

9.
$$E_1 = \begin{bmatrix} -\frac{1}{5} & 0 \\ 0 & 1 \end{bmatrix}$$

$$E_2 = \begin{bmatrix} 1 & \frac{6}{5} \\ 0 & 1 \end{bmatrix}$$

10. (a) Area of
$$S$$
 is 7, area of $T(S)$ is 5.

(b)
$$\frac{5}{7}$$
 and $-\frac{5}{7}$

(c)
$$B = \begin{bmatrix} 0 & -1 \\ \frac{7}{5} & \frac{3}{5} \end{bmatrix}$$
 (or $B = \begin{bmatrix} -\frac{8}{5} & -\frac{7}{5} \\ -1 & 0 \end{bmatrix}$)

11. (a) No.
$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \in H \text{ because } (0)(1) = (0)(0), \text{ and } \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \in H \text{ because } (1)(0) = (0)(0),$$
 but $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \not\in H$

(b) Yes, because (0)(0) = (0)(0).

(c) Yes. Justification: Suppose
$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in H$$
 and $k \in \mathbb{R}$. Since $ad = bc$ and $k \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} ka \\ kb \\ kc \\ kd \end{bmatrix}$, we have $(ka)(kd) = k^2(ad) = k^2(bc) = (kb)(kc)$, and therefore $k \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in H$.

- (d) No, since H does not satisfy closure under addition.
- 12. (a) Any invertible matrix, e.g.

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right].$$

(b) This is not possible. Each vector in $\operatorname{Nul}(A)$ is orthogonal to each vector in $\operatorname{Row}(A)$, thus if a vector is in both $\operatorname{Nul}(A)$ and $\operatorname{Row}(A)$ it is orthogonal to itself and so can only be the zero vector. This implies $\operatorname{Nul}(A) = \operatorname{Row}(A) = \{\mathbf{0}\}$ and thus $\dim(\operatorname{Nul}(A)) + \dim(\operatorname{Row}(A)) = 0$. However the domain space for the linear transformation arising from multiplying vectors by A is \mathbb{R}^2 and so $\dim(\operatorname{Nul}(A)) + \dim(\operatorname{Row}(A)) = \dim(\mathbb{R}^2) = 2$. A contradiction.

(c)
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(d) This is not possible. If T is onto A has a pivot position in every row. But then since A is square is should have a pivot position in every column, which implies T is one to one. (You can also give a dimension argument as in part (b).)

(e)
$$\begin{bmatrix} 2/3 \\ -2/3 \\ 1/3 \end{bmatrix}.$$

13. $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$

(b)
$$\operatorname{proj}_{\overrightarrow{AC}} \overrightarrow{AB} = \begin{bmatrix} 1/10 \\ 0 \\ -3/10 \end{bmatrix}$$
 $\operatorname{perp}_{\overrightarrow{AC}} \overrightarrow{AB} = \begin{bmatrix} 9/10 \\ -4 \\ 3/10 \end{bmatrix}$ (c) $\overline{\cancel{1690}} = \underline{\cancel{1310}}$

(d)
$$12x + 3y + 4z = 41$$

15. (a)
$$k = -\frac{5}{2}$$

(b)
$$k = 2$$

(c)
$$k = -1$$

16. Since \mathbf{x} is in both Nul(A) and Nul(B), we have $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$. Therefore $(A+B)\mathbf{x} = A\mathbf{x} + B\mathbf{x} = \mathbf{0} + \mathbf{0} = \mathbf{0}$, and thus $\mathbf{x} \in \text{Nul}(A+B)$.

17.

$$\left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 0 & -2 \end{array}\right] \right\}$$

- 18. (a) A basis of a vector space is a set of linearly independent vectors that spans the vector space.
 - (b) For any $\mathbf{x} \in V$ there are scalars $c_1, c_2, \dots c_n$ such that

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n,$$

since \mathcal{B} spans V, and therefore

$$T(\mathbf{x}) = T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n)$$

$$= c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2) + \dots + c_nT(\mathbf{v}_n) \text{ since } T \text{ is a linear transformation}$$

$$= c_1\mathbf{0} + c_2\mathbf{0} + \dots + c_n\mathbf{0}$$

$$= \mathbf{0}$$

END of EXAM