- **1.** (6 points) Let $A = \begin{bmatrix} 1 & 1 & c \\ 1 & c & c \\ c & c & c \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ c \end{bmatrix}$. Find the value(s) of c for which
 - (a) $A\mathbf{x} = \mathbf{b}$ has a unique solution.
 - (b) $A\mathbf{x} = \mathbf{b}$ has no solution.
 - (c) $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.
 - (d) Col(A) is a plane.
 - (e) Nul(A) is a plane.
- **2.** (3 points) Given $A = \begin{bmatrix} 1 & 5 & 1 & -7 \\ -2 & -10 & 1 & 2 \\ -5 & -25 & 1 & 11 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ -3 \\ -9 \end{bmatrix}$. Solve $A\mathbf{x} = \mathbf{b}$. Give your answer in parametric vector form.
- 3. (2 points) Set up an augmented matrix for finding the loop currents of the following electrical circuit. You do not have to solve it.

- **4.** (3 points) Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$. Find an LU factorization of A.
- 5. (8 points) Let L and A be 3×3 matrices, with L being lower triangular with 1's along the main diagonal and det A = 5, and let I be the 3×3 identity matrix. Compute each of the following determinants, or state that there is not enough information to do so.
 - (a) $\det(2A^TL)$
 - (b) $\det((A^{-1})^2)$
 - (c) $\det(L+A)$
 - (d) $\det(L+2I)$
- **6.** (4 points) Solve the following linear system for x_4 only, using Cramer's Rule.

$$-2x_2 + 2x_3 - x_4 = 0$$

$$-3x_1 + 6x_2 + 2x_3 + x_4 = 0$$

$$-x_1 - x_3 + x_4 = 0$$

$$-2x_1 + x_2 + x_4 = 1$$

- 7. (6 points) Let $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & -1 \\ -3 & -3 & 3 \end{bmatrix}$.
 - (a) Use row reduction to find the inverse of A.
 - (b) Write A as a product of elementary matrices.
- **8.** (3 points) Solve for the matrix X in $(A AX)^{-1} = X^{-1}B$.
- **9.** (4 points)
 - (a) Let M be a matrix such that $M^2 = I$. Prove that det $M = \pm 1$.
 - (b) If N is a matrix such that $\det N = 1$, does N^2 necessarily equal I? Support your answer with a proof or a counterexample.
- 10. (5 points) Suppose that A and B are $n \times n$ matrices. Complete the sentences with the word MUST, MIGHT or CANNOT as appropriate.
 - (a) If E_1 and E_2 are two elementary matrices, then E_1E_2 _____ be equal to E_2E_1 .
 - (b) If $A^3 = I$ then A _____ be invertible.
 - (c) If det A is zero then the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ be invertible.
 - (d) The expression (I A)(I + A) _____ be equal to $I A^2$.
 - (e) If B has no column of zeros, but AB does, then the columns of A ______ be linearly independent.

11. (10 points) Consider the set $S = \{X \in \mathbf{M}_{2 \times 2} : AX - X = 0\}$ where $A = \begin{bmatrix} 2 & -2 \\ 2 & -3 \end{bmatrix}$.

- (a) Find a nonzero matrix that is in S.
- (b) Find a nonzero 2×2 matrix that is not in S.
- (c) Does S contain the zero element? Justify your answer.
- (d) Is S closed under addition? Justify your answer.
- (e) Is S closed under scalar multiplication? Justify your answer.
- (f) Is S a subspace?
- **12.** (7 points)

Let P_x be the standard matrix of the transformation that projects points onto the x axis and let P_y be the standard matrix of the transformation that projects points onto the y axis.

- (a) Give the matrices P_x and P_y .
- (b) Find the standard matrix R_1 of a rotation such that R_1P_x transforms the unit square on the left side into the line segment on the right.
- (c) Do R_1 and P_x commute?
- (d) Find the standard matrix R_2 of a rotation such that R_2P_y transforms the square into the segment.
- (e) Do R_2 and P_y commute?
- (f) Find a basis for the null space of R_2P_y .
- 13. (8 points) A matrix A and its reduced row echelon form are given below.

$$A = \begin{bmatrix} 1 & 4 & -2 & 4 & v & 3 & 6 \\ 3 & 12 & -6 & 12 & w & 2 & 15 \\ -2 & -8 & 4 & -8 & x & -1 & -13 \\ 1 & 4 & -2 & 5 & y & 0 & 3 \\ 3 & 12 & -6 & 12 & z & 3 & 10 \end{bmatrix} \quad U = \begin{bmatrix} 1 & 4 & -2 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Let $\mathbf{a_i}$ denote the i^{th} column of A, and $\mathbf{u_i}$ denote the j^{th} column of U, so that

$$A = \begin{bmatrix} \mathbf{a_1} & \mathbf{a_2} & \mathbf{a_3} & \mathbf{a_4} & \mathbf{a_5} & \mathbf{a_6} & \mathbf{a_7} \end{bmatrix}$$
 and $U = \begin{bmatrix} \mathbf{u_1} & \mathbf{u_2} & \mathbf{u_3} & \mathbf{u_4} & \mathbf{u_5} & \mathbf{u_6} & \mathbf{u_7} \end{bmatrix}$.

You may use the above notation in your answers to the following questions.

- (a) Is $\{\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}, \mathbf{a_4}\}$ a basis for $\operatorname{Col}(A)$?
- (b) Find a basis for the column space of A.
- (c) Find a basis for Row(A).
- (d) Find a basis for Nul(A).
- (e) Express $\mathbf{a_7}$ as a linear combination of basis vectors for $\operatorname{Col}(A)$.
- (f) Find the values of the entries v, w, x, y, and z in the matrix A.
- (g) What is the dimension of $Nul(A^T)$?
- 14. (4 points) Let $\mathbf{u}, \mathbf{v}, \mathbf{p}$, and \mathbf{q} be non-zero vectors in \mathbb{R}^3 and suppose Span $\{\mathbf{u}, \mathbf{v}\} = \operatorname{Span} \{\mathbf{p}, \mathbf{q}\}$.
 - (a) If Span $\{\mathbf{u}, \mathbf{v}\}$ is a line explain why $(\mathbf{u} \times \mathbf{v}) \times (\mathbf{p} \times \mathbf{q}) = \mathbf{0}$.
 - (b) If Span $\{\mathbf{u}, \mathbf{v}\}$ is a plane explain why $(\mathbf{u} \times \mathbf{v}) \times (\mathbf{p} \times \mathbf{q}) = \mathbf{0}$.
- **15.** (11 points) A triangle is created by joining the x-, y-, and z-intercepts of the plane x + 2y + 2z = 18. The figure is shown below.

- (a) Find an equation of the line through the origin perpendicular to the plane.
- (b) Find the point of intersection of the line from part (a) with the plane.
- (c) Using the above results find the distance between the origin to the plane.
- (d) Find the coordinates of the vertices of the triangle shown in the figure.
- (e) Find the area of the triangle shown in the figure.
- (f) Find the distance between the point P(2,2,2) to the line found in part (a).
- (g) If θ is the angle between the plane x+2y+2z=18 and the xy-plane, find the value of $\cos\theta$.

- **16.** (7 points) Let I be the $n \times n$ identity matrix and let $B = \begin{bmatrix} I & -I \\ I & I \end{bmatrix}$.
 - (a) Compute and simplify B^2 .
 - (b) Find B^{-1} .
 - (c) Under what conditions on the $n \times n$ matrices X, Y, Z, and W will $\begin{vmatrix} I & -I \\ I & I \end{vmatrix}$ commute with $\begin{bmatrix} W & X \\ Y & Z \end{bmatrix}$.
- 17. (3 points) Suppose \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 are vertices of a triangle in \mathbb{R}^n centered at the origin so that $\mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3 = \mathbf{0}$. Suppose \mathbf{b}_1 , \mathbf{b}_2 , and \mathbf{b}_3 are vertices of another triangle in \mathbb{R}^n centered at the origin so that $\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3 = \mathbf{0}$. Now let T be a linear transformation such that $T(\mathbf{a}_1) = \mathbf{b}_1$ and $T(\mathbf{a}_2) = \mathbf{b}_2$. Show that $T(\mathbf{a}_3) = \mathbf{b}_3$
- **18.** (6 points) Let $T: \mathbf{P}_3 \to \mathbb{R}^2$ be the linear transformation defined by $T(\mathbf{p}(x)) = \begin{bmatrix} \mathbf{p}(1) \\ \mathbf{p}(2) \end{bmatrix}$.
 - (a) Find a basis of for the kernel of T.
 - (b) Find $T(-2x^3 + 3x^2 + 5x 6)$.
 - (c) Express the polynomial $-2x^3 + 3x^2 + 5x 6$ as a linear combination of the basis polynomials from part (a).

Answers

1. (a)
$$c \neq 0, 1$$
 (b) $c = 1$ (c) $c = 0$ (d) $c = 0$ (e) $c = 1$

2.
$$\begin{bmatrix}
x_1 \\ x_2 \\ x_3 \\ x_4
\end{bmatrix} = \begin{bmatrix}
2 \\ 0 \\ 1 \\ 0
\end{bmatrix} + s \begin{bmatrix}
-5 \\ 1 \\ 0 \\ 0
\end{bmatrix} + t \begin{bmatrix}
3 \\ 0 \\ 4 \\ 1
\end{bmatrix}$$
3.
$$\begin{bmatrix}
6 & -1 & 0 & 0 & | & 30 \\ -1 & 9 & -4 & 0 & | & 20 \\ 0 & -4 & 7 & -2 & | & 40 \\ 0 & 0 & -2 & 7 & | & 10
\end{bmatrix}$$
4.
$$\begin{bmatrix}
1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 & 0
\end{bmatrix}$$
5. (a) 40 (b) $\frac{1}{25}$ (c) not enough information (d) 27

$$4. \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

- (c) not enough information (d) 27
- 6. $x_4 = \frac{-22}{3}$

7. (a)
$$A^{-1} = \begin{bmatrix} -3 & 1 & -2/3 \\ 1 & 0 & 1/3 \\ -2 & 1 & 0 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 8. $X = (B^{-1} + A)^{-1}A$
- 9. (a) $\det(M^2) = \det I \Rightarrow (\det M)^2 = 1 \Rightarrow \det M = \pm 1$
- (b) No. Counterexample: $N = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
- (b) MUST (c) ČANNOT 10. (a) MIGHT
- (d) MUST (e) CANNOT

11. (a)
$$\begin{bmatrix} 2 & -6 \\ 1 & -3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (c) Yes. $A \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$

(d) MUST (e) CANNOT

11. (a)
$$\begin{bmatrix} 2 & -6 \\ 1 & -3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (c) Yes. $A \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$

(d) Yes. If $X_1, X_2 \in S$, then $A(X_1 + X_2) - (X_1 + X_2) = (AX_1 - X_1) + (AX_2 + X_2) = 0 + 0 = 0$.

(e) Yes. If $X_1 \in S$, then $A(kX_1) - (kX_1) = k(AX_1 - X_1) = k(0) = 0$. (f) Yes.

12. (a) $P_x = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $P_y = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ (b) $R_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ (c) Yes.

(d) $R_2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ (e) No. (f) $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$

13. (a) No. (b) $\left\{ \mathbf{a_1, a_4, a_5, a_6} \right\}$

- (f) v = 2, w = -3, x = 4, y = -1, z = 1
- 14. (a) **u** and **v** parallel \Rightarrow (**u** \times **v**) \times (**p** \times **q**) = **0** \times (**p** \times **q**) = **0**
- (b) Span $\{u, v\}$ and Span $\{p, q\}$ describe the same plane with parallel normal vector directions $N_1 = u \times v$
- and $\mathbf{N_2} = \mathbf{p} \wedge \mathbf{q}$, so $(\mathbf{a} \wedge \mathbf{v}) \wedge (\mathbf{p} \wedge \mathbf{q}) = I_1 \wedge I_2 = I_1$.

 15. (a) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = t \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ (b) (2,4,4) (c) 6 units (d) (18,0,0), (0,9,0), and (0,0,9).

 (e) $\frac{243}{2}$ units² (f) $\frac{2\sqrt{2}}{3}$ units (g) $\frac{2}{3}$ radians

 16. (a) $\begin{bmatrix} 0 & -2I \\ 2I & 0 \end{bmatrix}$ (b) $\begin{bmatrix} \frac{1}{2}I & \frac{1}{2}I \\ -\frac{1}{2}I & \frac{1}{2}I \end{bmatrix}$ (c) X = -Y and W = Z17. $T(\mathbf{a_1} + \mathbf{a_2} + \mathbf{a_3}) = T(\mathbf{0}) = \mathbf{0}$ and $T(\mathbf{a_1} + \mathbf{a_2} + \mathbf{a_3}) = T(\mathbf{a_1}) + T(\mathbf{a_2}) + T(\mathbf{a_3})$ for any linear transformation T, so $T(\mathbf{a_1}) + T(\mathbf{a_2}) + T(\mathbf{a_3}) = \mathbf{b_1} + \mathbf{b_2} + T(\mathbf{a_3}) = \mathbf{0} \Rightarrow T(\mathbf{a_3}) = -\mathbf{b_1} \mathbf{b_2} = \mathbf{b_3}$.

- 18. (a) $\{x^3 7x + 6, x^2 3x + 2\}$ (multiple solutions possible)
- (c) $-2(x^3-7x+6)+3(x^2-3x+2)$