1. (5 points) Given $A=\left[\begin{array}{rrrrr}1 & 1 & 4 & 1 & 6 \\ 2 & 2 & 5 & -1 & 18\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}2 \\ -5\end{array}\right]$.
(a) Express the general solution of $A \mathbf{x}=\mathbf{b}$ in parametric vector form.
(b) Given that $\left[\begin{array}{r}4 \\ 1 \\ 2 \\ 1 \\ -1\end{array}\right]$ is a particular solution to $A \mathbf{x}=\mathbf{d}$, express the general solution to $A \mathbf{x}=\mathbf{d}$ in parametric vector form.
2. (5 points) Use the matrix method to balance the chemical equation:

$$
\ldots \mathrm{KClO}_{3} \rightarrow \ldots \quad \mathrm{KCl}+\ldots \mathrm{O}_{2}
$$

3. (5 points) Let $A=\left[\begin{array}{rrr}-1 & -2 & 0 \\ 0 & 3 & 1 \\ -2 & -3 & 0\end{array}\right]$.
(a) Find the inverse of $A$.
(b) What is $\left(A^{T}\right)^{-1}$ ?
4. (3 points) Compute the determinant of $\left[\begin{array}{ll}2 a+3 b & a b d-b^{2} c \\ 2 c+3 d & a d^{2}-b c d\end{array}\right]$ given that det $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=8$. (You may find it helpful to factor the entries wherever possible.)
5. (5 points) You are given the following matrix. $A=\left[\begin{array}{rrr}3 & -1 & 1 \\ 9 & 2 & 5 \\ -6 & 22 & 10\end{array}\right]$
(a) Write an $L U$ decomposition for $A$.
(b) Write the matrix $L$ as a product of elementary matrices.
6. (9 points) Let

$$
A=\left[\begin{array}{rrrrr}
1 & a & 2 & 1 & e \\
2 & b & 3 & 2 & f \\
3 & c & -1 & -1 & g \\
-4 & d & 4 & 1 & h
\end{array}\right], R=\left[\begin{array}{ccccc}
1 & 3 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \mathbf{u}=\left[\begin{array}{c}
a \\
b \\
c \\
d
\end{array}\right] \quad \text { and } \mathbf{v}=\left[\begin{array}{c}
e \\
f \\
g \\
h
\end{array}\right]
$$

Assuming that $R$ is the reduced row echelon form of the matrix $A$, answer the following questions.
(a) What are the vectors $\mathbf{u}$ and $\mathbf{v}$ ?
(b) Find a basis for $\operatorname{Col}(A)$.
(c) How many vectors are in $\operatorname{Col}(A)$ ?
(d) Find a basis for $\operatorname{Nul}(A)$.
(e) For what value(s) of $k$ is $\left[\begin{array}{r}-25 \\ 13 \\ 5 \\ k\end{array}\right]$ in $\operatorname{Nul}\left(A^{T}\right)$ ?
(f) TRUE or FALSE: $\operatorname{Nul}\left(A^{T}\right)$ is a line.
7. (3 points) Assume that all matrices given below are $n \times n$ and invertible, solve for the matrix $X$ in

$$
B(X+A)^{-1}=C
$$

8. (7 points) Let $A$ be a $4 \times 4$ matrix with $\operatorname{det}(A)=-3$, and let $I$ be the $4 \times 4$ identity matrix. Furthermore, assume that $A=L U$ where $L$ is unit lower triangular and $U$ is upper triangular. Calculate:
(a) $\operatorname{det}(L)$
(b) $\operatorname{det}(U)$
(c) $\operatorname{det}\left(2\left(A^{T}\right)^{3} A^{-1}\right)$
(d) $\operatorname{det}(L A+A)$
9. (2 points) Suppose that $A$ is an $n \times n$ matrix. Show that if $\operatorname{Nul}(A)$ has dimension zero, then $\operatorname{Nul}\left(A^{2}\right)$ must also have dimension zero.
10. (2 points) Give an example of a non-invertible $2 \times 2$ matrix $A$, for which $\operatorname{det}(A+I)=0$.
11. (5 points) Let $H=\left\{A \in M_{2 \times 2}: A\left[\begin{array}{rr}1 & 2 \\ -1 & -2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right\}$
(a) Find a specific nonzero matrix that is in $H$.
(b) Given that $H$ is a subspace, find a basis for it.
12. (6 points) Let $V=\operatorname{Span}\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]\right\}$ and $W=\operatorname{Span}\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\right\}$
(a) Show that if $A$ is any matrix in $V$ then $A^{2}$ will be in $W$.
(b) TRUE or FALSE: $V$ is a 2-dimensional subspace of $W$.
(c) TRUE or FALSE: $W$ is a 3-dimensional subspace of $V$.
13. (8 points) Let $V=\left\{\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]: w=z\right.$ and $\left.x y=z^{2}\right\}$.
(a) Is $\mathbf{0}$ in $V$ ?
(b) Find a nonzero vector in $V$.
(c) Is $V$ closed under scalar multiplication? Justify your answer.
(d) Is $V$ closed under vector addition? Justify your answer.
(e) Is $V$ a subspace of $\mathbb{R}^{4}$ ?
14. (6 points) Let $\mathcal{T}=\triangle A B C$ denote the triangle whose vertices are the points $A(-2,6,8), B(-3,9,12)$, and $C(0,6,9)$.
(a) Is the inner angle at the vertex $B$ in $\mathcal{T}$ acute (between 0 and $\frac{\pi}{2}$ radians) or obtuse (between $\frac{\pi}{2}$ and $\pi$ radians). Explain your answer.
(b) Find an equation of the form $a x+b y+c z=d$ for the plane through the point $P(1,0,-1)$ that is parallel to the plane containing the triangle $\mathcal{T}$.
15. (5 points) Let $\mathcal{L}$ denote the line given by the parametric vector equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}5 \\ 8 \\ 0\end{array}\right]+t\left[\begin{array}{r}2 \\ 3 \\ -1\end{array}\right]$, and let $P$ denote the point $(7,10,3)$. Find the distance from $\mathcal{L}$ to $P$.
16. (5 points) Consider the line $\mathcal{L}$ in $\mathbb{R}^{3}$ given by $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}-4 \\ 3 \\ 5\end{array}\right]+t\left[\begin{array}{r}2 \\ 1 \\ -2\end{array}\right]$ and the plane $\mathcal{P}$ given by $x-2 y+2 z=-8$.
(a) Find the points on the line $\mathcal{L}$ that are 1 unit away from the plane $\mathcal{P}$.
(b) Find the point where $\mathcal{L}$ and $\mathcal{P}$ intersect.
17. (5 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that rotates vectors clockwise around the origin by $\theta$, then reflects through the $x$ axis, then rotates again by $\theta$ clockwise, and then reflects through the $y$ axis. If $T(\mathbf{x})=A \mathbf{x}$, find $A$. (Your final answer should not depend on the angle $\theta$.)
18. (5 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a transformation such that

$$
T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1
\end{array}\right], T\left(\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{r}
-27 \\
13
\end{array}\right], T\left(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{r}
-27 \\
13
\end{array}\right]
$$

(a) Based on the given conditions is $T$ one-to-one? Explain your answer.
(b) Express $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
(c) Is the transformation $T$ linear? Justify.
19. (2 points) Let $T: U \rightarrow V$ be a linear transformation. Show that if $T\left(\mathbf{u}_{1}\right)=T\left(\mathbf{u}_{2}\right)$ then $2 \mathbf{u}_{1}-2 \mathbf{u}_{2}$ is in the kernel of $T$.
20. ( 7 points) Fill in the blanks with the word must, might, or cannot, as appropriate.
(a) The non pivot columns of a matrix $A \ldots$ form a linearly dependent set.
(b) If $A$ is an $5 \times 8$ matrix and $\operatorname{rank}(A)=5$ then the linear transformation $T(\mathbf{x})=A \mathbf{x}$ $\qquad$ be onto and $\qquad$ be one-to-one.
(c) If $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is a linearly independent set in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ $\qquad$ be a linearly independent set.
(d) The columns of an elementary matrix $\qquad$ form a linearly independent set.
(e) If $\operatorname{Col}(A)=\operatorname{Col}\left(A^{T}\right)$ for a $n \times n$ matrix $A$, then $A$ $\qquad$ be a symmetric matrix.
(f) Given an $n \times n$ matrix $A$. If the system $A \mathbf{x}=\mathbf{b}$ is inconsistent for some $\mathbf{b} \in \mathbb{R}^{n}$, then the system $A \mathrm{x}=\mathbf{0}$ $\qquad$ have non-trivial solutions.

Answers

1. (a) $\mathbf{x}=\left[\begin{array}{r}-10 \\ 0 \\ 3 \\ 0 \\ 0\end{array}\right]+r\left[\begin{array}{r}-1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+s\left[\begin{array}{r}3 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{r}-14 \\ 0 \\ 2 \\ 0 \\ 1\end{array}\right]$
(b) $\mathbf{x}=\left[\begin{array}{r}4 \\ 1 \\ 2 \\ 1 \\ -1\end{array}\right]+r\left[\begin{array}{r}-1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+s\left[\begin{array}{r}-14 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{r}{\left[\begin{array}{r}-1 \\ 2 \\ 0 \\ 1\end{array}\right]} \\ \text { 2. } 2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}\end{array}{ }^{[ }\right]$
2. (a) $A^{-1}=\left[\begin{array}{rrr}3 & 0 & -2 \\ -2 & 0 & 1 \\ 6 & 1 & -3\end{array}\right] \quad$ (b) $\left(A^{T}\right)^{-1}=\left[\begin{array}{rrr}3 & -2 & 6 \\ 0 & 0 & 1 \\ -2 & 1 & -3\end{array}\right]$
3. 128
4. (a) $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 4 & 1\end{array}\right]\left[\begin{array}{rrr}3 & -1 & 1 \\ 0 & 5 & 2 \\ 0 & 0 & 4\end{array}\right]$
(b) $L=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 4 & 1\end{array}\right]$
5. (a) $\mathbf{u}=\left[\begin{array}{r}3 \\ 6 \\ 9 \\ -12\end{array}\right], \mathbf{v}=\left[\begin{array}{r}6 \\ 11 \\ 3 \\ -2\end{array}\right]$
(b) $\left\{\left[\begin{array}{r}1 \\ 2 \\ 3 \\ -4\end{array}\right],\left[\begin{array}{r}2 \\ 3 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{r}1 \\ 2 \\ -1 \\ 1\end{array}\right]\right\}$
(c) Infinitely many
(d) $\left\{\left[\begin{array}{r}-3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ 0 \\ -1 \\ -2 \\ 1\end{array}\right]\right\}$
(e) $k=4 \quad$ (f) TRUE
6. $X=C^{-1} B-A$
7. (a) 1
(b) -3
(c) 144
(d) $\operatorname{det}(L+I) \operatorname{det}(A)=-48$
8. $\operatorname{dim}(\operatorname{Nul}(A))=0 \Rightarrow A$ is invertible and $\operatorname{has} \operatorname{det}(A) \neq 0 \Rightarrow \operatorname{det}\left(A^{2}\right)=[\operatorname{det}(A)]^{2} \neq 0 \Rightarrow A^{2}$ is also invertible and has $\operatorname{dim}\left(\operatorname{Nul}\left(A^{2}\right)\right)=0$
9. $\left[\begin{array}{rr}-1 & 0 \\ 0 & 0\end{array}\right]$ (many answers possible)
10. (a) $\left[\begin{array}{ll}2 & 2 \\ 0 & 0\end{array}\right]$ (many answers possible)
(b) $\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]\right\}$ (many answers possible)
11. (a) $A^{2}=\left(k_{1}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]+k_{2}\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]\right)^{2}=k_{1}{ }^{2}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]+2\left(k_{1}+k_{2}\right)\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]+k_{2}{ }^{2}\left[\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ $\Rightarrow A^{2} \in W$
(b) TRUE
(c) FALSE (not a subset of $V$ )
12. (a) Yes.
(b) $\left[\begin{array}{r}4 \\ -2 \\ -8 \\ 4\end{array}\right]$ (many answers possible)
(c) Yes. If $\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right] \in V$, then $w=z$ and
$x y=z^{2}$ are true. So $k\left[\begin{array}{c}w \\ x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}k w \\ k x \\ k y \\ k z\end{array}\right] \in V$ since $k(w)=k(z)$ and $(k x)(k y)=k^{2}(x y)=k^{2}\left(z^{2}\right)=(k z)^{2}$
(d) No. Counter-example: $\left[\begin{array}{r}4 \\ -2 \\ -8 \\ 4\end{array}\right],\left[\begin{array}{l}-4 \\ -2 \\ -8 \\ -4\end{array}\right] \in V$, but their sum $\left[\begin{array}{r}0 \\ -4 \\ -16 \\ 0\end{array}\right] \notin V$.
(e) No.
13. (a) Since $\frac{\overrightarrow{B A} \cdot \overrightarrow{B C}}{\|\overrightarrow{B A}\|\|\overrightarrow{B C}\|}>0$, the inner angle at the vertex $B$ must be acute.
(b) $-x-3 y+2 z=-3$
14. $\frac{3 \sqrt{6}}{2}$ units
15. (a) $\left(\frac{3}{2}, \frac{23}{4}, \frac{-1}{2}\right)$ and $\left(\frac{-3}{2}, \frac{17}{4}, \frac{5}{2}\right) \quad$ (b) $(0,5,1)$
16. $A=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$
17. (a) No. $T\left(\left[\begin{array}{r}1 \\ -1\end{array}\right]\right)$ and $T\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]\right)$ yield the same result.
(b) $\left[\begin{array}{l}2 \\ 3\end{array}\right]=\frac{5}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]+\frac{-1}{2}\left[\begin{array}{r}1 \\ -1\end{array}\right]$
(c) No. $T\left(\frac{5}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]+\frac{-1}{2}\left[\begin{array}{r}1 \\ -1\end{array}\right]\right) \neq \frac{5}{2} T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)+\frac{-1}{2} T\left(\left[\begin{array}{r}1 \\ -1\end{array}\right]\right)$.
18. $T\left(2 \mathbf{u}_{1}-2 \mathbf{u}_{2}\right)=2 T\left(\mathbf{u}_{1}\right)-2 T\left(\mathbf{u}_{2}\right)=2 T\left(\mathbf{u}_{1}\right)-2 T\left(\mathbf{u}_{1}\right)=\mathbf{0} \Rightarrow 2 \mathbf{u}_{1}-2 \mathbf{u}_{\mathbf{2}} \in \operatorname{ker}(T)$
19. (a) MIGHT
(b) MUST, CANNOT
(c) MUST
(d) MUST
(e) MIGHT
(f) MUST
