1. Given that $A=\left[\begin{array}{lllll}1 & 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 1 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}2 \\ -3 \\ 1\end{array}\right]$
[4 pts] (a) Solve the system $A \mathbf{x}=\mathbf{b}$
[1 pt] (b) Write \mathbf{b} as a linear combination of columns of A.
$[1 \mathrm{pt}] \quad(\mathrm{c})$ What is $\operatorname{rank}(A)$?
[1 pt] (d) What is the dimension of $\operatorname{Nul}\left(A^{T}\right)$?
[1 pt]
(e) Is $\mathbf{u}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$ in $\operatorname{Nul}\left(A^{T}\right)$? Justify.
2. Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}-1 \\ 1 \\ k^{2}-5\end{array}\right]$ and $\mathbf{v}_{4}=\left[\begin{array}{l}2 \\ 3 \\ k\end{array}\right]$.
[4 pts] (a) For what values of k is \mathbf{v}_{4} in $\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)$?
[2 pts] (b) For what values of k is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ linearly independent?
[4 pts] 3. Set up an augmented matrix for finding the loop currents of the following electrical circuit. Do not solve the system

[5 pts] 4. Find the inverse of $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 4 & 7 \\ -1 & -1 & -3\end{array}\right]$.
3. Let $A=\left[\begin{array}{rrr}2 & 4 & 6 \\ 3 & 3 & 12 \\ 1 & 8 & 5\end{array}\right]$.
[4 pts] (a) Find an $L U$-factorization of A.
[4 pts] (b) Write L as a product of elementary matrices.
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the horizontal expansion (stretching) by a factor of 2 , and let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the vertical shear that transforms $(1,0)$ to $(1,2)$.
[2 pts] (a) Find the standard matrix for S.
[2 pts]
(b) Find the standard matrix for T.
$[2 \mathrm{pts}] \quad$ (c) Find the standard matrix for the composition $S \circ T$.
$[1 \mathrm{pt}] \quad(\mathrm{d})$ Let \mathcal{R} denote the triangle in \mathbb{R}^{2} whose vertices are $(-2,0),(2,0)$, and $(0,4)$. In the space provided sketch \mathcal{R}.

[1 pt] (e) In the same graph sketch the image $(S \circ T)(\mathcal{R})$.
[3 pts] (f) Compute the area of the image $(S \circ T)(\mathcal{R})$.
5. Let $A=\left[\begin{array}{rrr}1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$, and let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $T(\mathbf{x})=A \mathbf{x}$.
(a) Let \mathcal{P} be the plane given by the parametric-vector equation $\mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+s\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]+t\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]$. Is the image $T(\mathcal{P})$ a plane, a line, or a point? Justify.
[2 pts] (b) Is T one-to-one? Justify.
6. Let A, B, and C be 3×3 matrices. If $\operatorname{det}(A)=10$, $\operatorname{det}(B)=-2$ and C is non-invertible, evaluate the following determinants. Show your work.
$[2 \mathrm{pts}] \quad$ (a) $\operatorname{det}\left(3 B^{2} A^{-1}\right)$
[2 pts]
(b) $\operatorname{det}\left(C^{T} A+C^{T} B\right)$
[2 pts]
(c) $\operatorname{det}\left((3 A)^{-1} B^{2}\right)$
7. Given $\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ 1 & 1 & 1\end{array}\right]=3$, compute the following determinants.
[3 pts]
(a) $\operatorname{det}\left[\begin{array}{ccc}2 & 2 & 2 \\ a & b & c \\ d-3 & e-3 & f-3\end{array}\right]$
(b) $\operatorname{det}\left[\begin{array}{cccc}0 & 0 & 5 & 10 \\ a & d & 2 & 5 \\ b & e & 2 & 5 \\ c & f & 2 & 5\end{array}\right]$
8. Consider the block matrices $M=\left[\begin{array}{cc}I & A \\ A & I\end{array}\right]$ and $N=\left[\begin{array}{rr}I & 0 \\ -A & I\end{array}\right]$, where A is an $n \times n$ matrix such that $A^{2}=I$.
(b) Is M invertible? Justify.
9. Let \mathbf{u} and \mathbf{v} be two unit vectors in \mathbb{R}^{n} which are orthogonal to each other. Compute the following.
[2 pts]
[2 pts]
(b) $\|\mathbf{u}+4 \mathbf{v}\|$
[3 pts] 12. Find the point between the points $P(6,-2,5)$ and $Q(10,2,7)$ whose distance from P is 2 units.
[2 pts] 13. Find the values of h and k for which the line $\mathbf{x}=\left[\begin{array}{r}h \\ 2 \\ -1\end{array}\right]+t\left[\begin{array}{l}1 \\ k \\ 3\end{array}\right]$ lies in the plane $x-2 y+z=5$.
10. You are given the following points: $A(1,2,3), B(2,2,4)$, and $C(-5,3,1)$.
[3 pts] (a) Give a parametric-vector equation for the line containing A and B.
[4 pts] (b) Find the point on the line from part (a) that is closest to the point C.
[3 pts] (c) Find the area of the triangle whose vertices are the points A, B, and C.
11. Let $H=\left\{\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right]: x^{2}+y^{2}=z^{2}\right\}$.
[2 pts] (a) List two matrices that belong to H which are not scalar multiples of each other.
[2 pts] (b) Is H closed under scalar multiplication? Justify.
[2 pts] (c) Is H closed under addition? Justify.
[5 pts] 16. Given $A=\left[\begin{array}{rrr}-1 & -1 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & -2\end{array}\right]$, consider the subspace W of \mathbb{R}^{3} given by $W=\left\{\mathbf{x} \in \mathbb{R}^{3}: A \mathbf{x}=-2 \mathbf{x}\right\}$. Find a basis for W.
12. Complete the following statements with "must", "might", or "cannot", as appropriate.
[1 pt] (a) If $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{8}$ is a linear transformation, then T \qquad be onto.
[1 pt] (b) If A is row equivalent to B, then $\operatorname{Col}(A)$ \qquad equal $\operatorname{Col}(B)$.
[1 pt]
(c) If \mathbf{u} and \mathbf{v} are nonzero vectors and $\operatorname{Proj}_{\mathbf{v}} \mathbf{u}=\mathbf{u}$, then \mathbf{u} \qquad be parallel to \mathbf{v}.
[1 pt]
(d) If \mathbf{u} and \mathbf{v} are nonzero vectors in \mathbb{R}^{3}, then $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}$ \qquad be equal to 0 .
[2 pts]
(e) Let A be a 3×3 matrix, and let B be a 4×4 matrix. If $\operatorname{rank}(A)=\operatorname{rank}(B)$, then $\operatorname{det}(A)$ equal zero and $\operatorname{det}(B)$ \qquad equal zero.
[2 pts] 18. Give an example of a 3×5 matrix $B=\left[\begin{array}{lllll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} & \mathbf{b}_{4} & \mathbf{b}_{5}\end{array}\right]$ that satisfies all four of the following conditions.
(i) B is in reduced row echelon form.
(ii) \mathbf{b}_{1} and \mathbf{b}_{3} are pivot columns.
(iii) $\left\{\mathbf{b}_{2}, \mathbf{b}_{4}\right\}$ is a basis for $\operatorname{Col}(B)$.
(iv) $\left\{\mathbf{b}_{2}, \mathbf{b}_{5}\right\}$ is not a basis for $\operatorname{Col}(B)$.

Answers

1. $[A \mid \mathbf{b}] \sim\left[\begin{array}{rrrrr|r}1 & 0 & 1 & 2 & 0 & 7 \\ 0 & 1 & -2 & -3 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & -5\end{array}\right]$.
(a) $\mathbf{x}=\left[\begin{array}{r}7 \\ -3 \\ 0 \\ 0 \\ -5\end{array}\right]+s\left[\begin{array}{r}-1 \\ 2 \\ 1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{r}-2 \\ 3 \\ 0 \\ 1 \\ 0\end{array}\right]$
(b) $\mathbf{b}=7 \operatorname{col}_{1}(A)-3 \operatorname{col}_{2}(A)-5 \operatorname{col}_{5}(A)=7\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]-3\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]-5\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$
(c) $\operatorname{rank}(A)=3$
(d) $\operatorname{dim} \operatorname{Nul}\left(A^{T}\right)=3-\operatorname{rank}\left(A^{T}\right)=3-\operatorname{rank} A=0$
(e) No, since $\operatorname{dim} \operatorname{Nul}\left(A^{T}\right)=0$ implies $\operatorname{Nul}\left(A^{T}\right)=\{\mathbf{0}\}$.
(Alternatively, note $\left.A^{T} \mathbf{u}=\left(\mathbf{u}^{T} A\right)^{T}=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right]^{T} \neq \mathbf{0}.\right)$
2. $\left[\begin{array}{lll|l}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \mid \mathbf{v}_{4}\end{array}\right] \sim\left[\begin{array}{ccc|c}1 & 1 & -1 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & k^{2}-4 & k-2\end{array}\right]=R$
(a) $\mathbf{v}_{4} \in \operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right) \Leftrightarrow \operatorname{col}_{4}(R)$ is not a pivot column $\Leftrightarrow k \neq-2$
(b) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \Leftrightarrow \operatorname{col}_{3}(R)$ is a pivot column $\Leftrightarrow k \in \mathbb{R} \backslash\{-2,2\}$
3. Loop 1: $6 I_{1}+4\left(I_{1}-I_{2}\right)=10 \Longrightarrow 10 I_{1}-4 I_{2}=10$

Loop 2: $4\left(I_{2}-I_{1}\right)+3\left(I_{2}-I_{3}\right)+3 I_{2}=-25 \Longrightarrow-4 I_{1}+10 I_{2}-3 I_{3}=-25$
Loop 2: $3\left(I_{3}-I_{2}\right)+5 I_{3}=15 \Longrightarrow-3 I_{2}+8 I_{3}=15$
Augmented matrix is $\left[\begin{array}{rrr|r}10 & -4 & 0 & 10 \\ -4 & 10 & -3 & -25 \\ 0 & -3 & 8 & 15\end{array}\right]$
4. $A^{-1}=\left[\begin{array}{rrr}5 & -3 & -2 \\ 1 & 0 & 1 \\ -2 & 1 & 0\end{array}\right]$.
5. (a) $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 3 / 2 & 1 & 0 \\ 1 / 2 & -2 & 1\end{array}\right]\left[\begin{array}{rrr}2 & 4 & 6 \\ 0 & -3 & 3 \\ 0 & 0 & 8\end{array}\right]$
(b) $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 / 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 / 2 & 0 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1\end{array}\right]$
6. (a) $\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
(b) $\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}2 & 0 \\ 4 & 1\end{array}\right]$
(d) The isosceles triangle.
(e) The scalene triangle.

(f) Area of $(S \circ T)(\mathcal{R})=\left|\operatorname{det}\left[\begin{array}{ll}2 & 0 \\ 4 & 1\end{array}\right]\right|($ Area of $\mathcal{R})=16$
7. (a) $T(\mathcal{P})=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]+\operatorname{Span}\left(\left\{\left[\begin{array}{r}2 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]\right\}\right)=\operatorname{Span}\left(\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}\right)$.
$T(\mathcal{P})$ is a line since $T(\mathcal{P})$ is a one dimensional subspace.
(b) T is not one-to-one since T transforms both $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]$ to $\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$.
8. (a) $54 / 5$
(b) 0
(c) $2 / 135$
9. (a) 6
(b) 15
10. (a) $M N=\left[\begin{array}{cc}0 & A \\ 0 & I\end{array}\right]$
(b) Note that $M N$ has a column of zeros, and thus $\operatorname{det}(M N)=0$. Also, N is a unit lower triangular matrix, and thus $\operatorname{det} N=1$. Therefore

$$
\operatorname{det} M=\operatorname{det} M \operatorname{det} N=\operatorname{det}(M N)=0
$$

Since $\operatorname{det} M=0$ we have that M is non-invertible.
11. (a) -3
(b) $\sqrt{17}$
12. $(22 / 3,-2 / 3,17 / 3)$
13. $h=10, k=2$
14. (a) $\mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+t\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
(b) $(-3,2,-1)$
(c) $\frac{3 \sqrt{2}}{2}$
15. Let $H=\left\{\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right]: x^{2}+y^{2}=z^{2}\right\}$.
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$
(b) Yes. (Suppose that $A=\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right] \in H$ and $c \in \mathbb{R}$. Then $c A=\left[\begin{array}{cc}c x & c y \\ 0 & c z\end{array}\right]$, and

$$
\begin{aligned}
(c x)^{2}+(c y)^{2} & =c^{2} x^{2}+c^{2} y^{2} \\
& =c^{2}\left(x^{2}+y^{2}\right) \\
& =c^{2}\left(z^{2}\right) \quad(\text { since } A \in H) \\
& =(c z)^{2}
\end{aligned}
$$

This shows that $c A \in H$, therefore H is closed under scalar multiplication.)
(c) No. (Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$. Then A and B are in H, but $A+B=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right] \notin H$.)
16. A basis is $\left\{\left[\begin{array}{r}-1 \\ -1 \\ 1\end{array}\right]\right\}$.
17. (a) cannot
(b) might
(c) must
(d) must
(e) might, must
18. $\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

