- **1.** (4 points) Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & a & 2 \\ 1 & 2 & a^2 \end{bmatrix}$ and $b = \begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix}$. Find the value(s) of a for which the equation $A\mathbf{x} = \mathbf{b}$ has:
 - (a) a unique solution.
 - (b) infinitely many solutions.
 - (c) no solution.
- **2.** (4 points) Find the polynomial $p(x) = x^4 + ax^3 + bx^2 + cx + d$ such that p(1) = -1, p(-1) = 1, p'(1) = -7, and p'(-1) = -3.
- **3.** (6 points) Given the matrix $A = \begin{bmatrix} 1 & 0 & 2 & 1 & 1 \\ 4 & 0 & 8 & 4 & 4 \\ 2 & 0 & 3 & 2 & 1 \end{bmatrix}$, find a basis for each of the following subspaces.
 - (a) Col(A)
 - (b) Row(A)
 - (c) $Nul(A^T)$
- **4.** (2 points) Suppose **u** is a solution to A**x** = **b** and **v** is a solution to A**x** = **0**. Show that **w** = 3**u** 4**v** is a solution to A**x** = 3**b**.
- **5.** (6 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ denote the vertical expansion by a factor of 2 and let $S: \mathbb{R}^2 \to \mathbb{R}^2$ denote the (counter-clockwise) rotation about the origin by $\pi/2$ radians.
 - (a) Find the standard matrix of the composite $S \circ T$.
 - (b) Let \mathcal{R} denote the triangular region with vertices (-1, -1), (4, 0), and (3, 2). Make two sketches, one of \mathcal{R} , and the other of the image $(S \circ T)(\mathcal{R})$.
- **6.** Let $A = \begin{bmatrix} B & 0 \\ C & 2I \end{bmatrix}$, where B is invertible.
 - (a) (3 points) Find an expression for the partitioned matrix A^{-1} .
 - (b) (3 points) Use your work from part (a) to find the inverse of the matrix $\begin{bmatrix} 2 & 4 & 0 & 0 & 0 \\ -1 & -5 & 0 & 0 & 0 \\ -1 & 1 & 2 & 0 & 0 \\ 2 & -3 & 0 & 2 & 0 \\ 2 & 1 & 0 & 0 & 2 \end{bmatrix}.$
 - (c) (1 point) Use your previous result to find the inverse of $\begin{bmatrix} 2 & -1 & -1 & 2 & 2 \\ 4 & -5 & 1 & -3 & 1 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}.$

December 8th, 2017

- **7.** Consider the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1/2 & 2 \\ 1 & 3 & 12 \end{bmatrix}$.
 - (a) (3 points) Find A^{-1} by row reduction.
 - (b) (4 points) Express the matrix A as a product of elementary matrices.
- **8.** (3 points) Let A and B be invertible $n \times n$ matrices. Given that B is symmetric, determine whether the matrix $AB^{-1}A^T B$ is also symmetric. Justify your answer.
- **9.** (3 points) Solve for the matrix X in the equation below:

$$(3XB)^{-1} + A = X^{-1}$$

Assume that all matrices involved are invertible.

- **10.** (4 points) Given the matrix $A = \begin{bmatrix} 2 & 2 & 3 & 3 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 3 & 4 \\ 0 & -1 & 2 & -3 \end{bmatrix}$, find the determinant of A.
- 11. (6 points) Given A, B, and C are 2×2 matrices such that $\det(A) = 3$, $\det(B) = -2$, and $\det(C) = 0$, evaluate the following determinants.
 - (a) $\det((3AB^2)^{-1})$
 - (b) $\det(AC + BC)$
 - (c) $\det(A^{-1} + \operatorname{adj}(A))$
- **12.** (7 points) Let $\mathcal{H} = \{ A \in M_{2 \times 2} : \det A = 0 \}$.
 - (a) Find two matrices in \mathcal{H} , neither of which is a scalar multiple of the other.
 - (b) Is \mathcal{H} closed under addition?
 - (c) Is \mathcal{H} closed under scalar multiplication?
 - (d) Is \mathcal{H} a subspace of $M_{2\times 2}$?
- 13. (4 points) Let $\mathbf{v} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ and $\mathcal{S} = \{A \in \mathbb{M}_{2 \times 2} : A\mathbf{v} = \mathbf{0}\}$. Find a basis for \mathcal{S} .
- **14.** (4 points) Let W be the set of all polynomials \mathbf{p} in \mathbb{P}_3 such that $\mathbf{p}(1) = 0$ and $\mathbf{p}'(-1) = 0$. Find a basis for W.

15. (6 points) Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$.

- (a) Find an equation of the form $ax_1 + bx_2 + cx_3 = d$ for the plane spanned by **u** and **v**.
- (b) Show that the line $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix} + t \begin{bmatrix} 9 \\ 2 \\ 4 \end{bmatrix}$ is entirely contained on the plane spanned by \mathbf{u} and \mathbf{v} .
- **16.** Consider the plane \mathcal{P} : 2x 4y + 2z = 6, the line \mathcal{L} : $\mathbf{x} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix} + t \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$, and the point Q(1, 6, 0).
 - (a) (1 point) Find an equation for the line through the origin and the point Q.
 - (b) (2 points) Find the cosine of the angle between the plane \mathcal{P} and the yz-plane.
 - (c) (3 points) Find the distance from the point Q to the line \mathcal{L} .
 - (d) (4 points) Find the point on the plane \mathcal{P} that is closest to the point Q.
 - (e) (3 points) Find an equation of the form ax + by + cz = d for the plane that contains the line \mathcal{L} and is perpendicular to the plane \mathcal{P} .
- 17. (4 points) Let $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -3 \\ k \\ k^2 \end{bmatrix}$.
 - (a) Find all values of k for which \mathbf{u} and \mathbf{v} are orthogonal.
 - (b) Find a unit vector that is orthogonal to \mathbf{u} .
- **18.** (3 points) Let $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ be a set of linearly independent vectors in \mathbb{R}^3 .
 - (a) Simplify $\mathbf{u} \cdot [(\mathbf{v} \mathbf{u}) \times (\mathbf{w} \mathbf{u})].$
 - (b) True or false: the parallelepiped with sides \mathbf{u} , \mathbf{v} and \mathbf{w} has the same volume as the parallelepiped with sides \mathbf{u} , $\mathbf{v} \mathbf{u}$, and $\mathbf{w} \mathbf{u}$.
- 19. (3 points) Show that if $\{a, b\}$ is linearly independent, then $\{a b, a + b\}$ is also linearly independent.
- 20. (4 points) Complete the following statements with "must", "might", or "cannot", as appropriate.
 - (a) If A is a product of elementary matrices, then det(A) _____ equal zero.
 - (b) Two lines in \mathbb{R}^3 that are both perpendicular to a third line _____ be parallel.
 - (c) If matrix AB is invertible, then A ______ be invertible.
 - (d) Given a linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^2$, the kernel of T _____ be a plane.

ANSWERS

1. (a)
$$a \neq -1, a \neq 1$$
, and $a \neq 4$ (b) $a = 4$ (c) $a = -1$ or $a = 1$

2.
$$p(x) = x^4 - 2x^3 - 3x^2 + x + 2$$

3. (a)
$$\left\{ \begin{bmatrix} 1\\4\\2 \end{bmatrix}, \begin{bmatrix} 2\\8\\3 \end{bmatrix} \right\}$$
 (b) $\left\{ \begin{bmatrix} 1 & 0 & 2 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \end{bmatrix} \right\}$ (c) $\left\{ \begin{bmatrix} -4\\1\\0 \end{bmatrix} \right\}$

4.
$$A\mathbf{w} = A(3\mathbf{u} - 4\mathbf{x}) = 3A\mathbf{u} - 4A\mathbf{v} = 3\mathbf{b} - 4 \cdot \mathbf{0} = 3\mathbf{b}$$

5. (a)
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix}$$

(b)

6. (a)
$$\begin{bmatrix} B^{-1} & 0 \\ -\frac{1}{2}CB^{-1} & \frac{1}{2}I \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 5/6 & 2/3 & 0 & 0 & 0 \\ -1/6 & -1/3 & 0 & 0 & 0 \\ 1/2 & 1/2 & 1/2 & 0 & 0 \\ -13/12 & -7/6 & 0 & 1/2 & 0 \\ -3/4 & -1/2 & 0 & 0 & 1/2 \end{bmatrix}$$
 (c) Transpose of answer in part (b)

7. (a)
$$A^{-1} = \begin{bmatrix} -24 & 6 & 1 \\ 4 & -2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 24 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix}$$

8. Yes, as
$$(AB^{-1}A^T - B)^T = (AB^{-1}A^T)^T - B^T = A(B^{-1})^T A^T - B = A(B^T)^{-1}A^T - B = AB^{-1}A^T - B$$

9.
$$X = A^{-1}(I - \frac{1}{3}B^{-1})$$

10.
$$det(A) = 3$$
 11. (a) $\frac{1}{108}$ (b) 0 (c) $\frac{16}{3}$

12. (a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ (many answers)

(b) No.
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in \mathcal{H}$ however $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \notin \mathcal{H}$

(c) Yes. Given
$$A \in \mathcal{H}, k \in \mathbb{R}, \det(kA) = k^2 \det A = k^2 \cdot 0 = 0$$

(d) No, as \mathcal{H} is not closed under vector addition.

13.
$$\left\{ \begin{bmatrix} 3 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 3 & 2 \end{bmatrix} \right\}$$
 14. $\left\{ 3x^3 + 2x^2 - 5x, 2x^3 + 3x^2 - 5 \right\}$

15. (a)
$$2x_1 + x_2 - 5x_3 = 0$$
 (b) $2x_1 + x_2 - 5x_3 = 2(2+9t) + (6+2t) - 5(2+4t) = 0$

16. (a)
$$\mathbf{x} = t \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$$
 (b) Using $\mathbf{u} = \begin{bmatrix} 2 \\ -4 \\ 5 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\cos(\theta) = \frac{1}{\sqrt{6}}$ (c) $\sqrt{3}$ units

(d)
$$\left(\frac{10}{3}, \frac{4}{3}, \frac{7}{3}\right)$$
 (e) $y + 2z = 7$

17. (a)
$$k = -2$$
 and $k = 3$ (b) $\begin{bmatrix} 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ (many answers)

18. (a)
$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$$
 (b) True

19. Show that if $c_1(\mathbf{a} - \mathbf{b}) + c_2(\mathbf{a} + \mathbf{b}) = 0$, then $c_1 = 0$ and $c_2 = 0$.

$$c_1(\mathbf{a} - \mathbf{b}) + c_2(\mathbf{a} + \mathbf{b}) = 0 \rightarrow c_1\mathbf{a} - c_1\mathbf{b} + c_2\mathbf{a} + c_2\mathbf{b} = 0 \rightarrow (c_1 + c_2)\mathbf{a} + (-c_1 + c_2)\mathbf{b} = 0$$

As **a** and **b** are linearly independent, $c_1 + c_2 = 0$ and $-c_1 + c_2 = 0$. Solving this system of two equations gives $c_1 = 0$ and $c_2 = 0$.

20. (a) cannot (b) might (c) might (d) might