1. (4 points) Let $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & a & 2 \\ 1 & 2 & a^{2}\end{array}\right]$ and $b=\left[\begin{array}{l}2 \\ 4 \\ 1\end{array}\right]$. Find the value(s) of a for which the equation $A \mathbf{x}=\mathbf{b}$ has:
(a) a unique solution.
(b) infinitely many solutions.
(c) no solution.
2. (4 points) Find the polynomial $p(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ such that $p(1)=-1, p(-1)=1, p^{\prime}(1)=-7$, and $p^{\prime}(-1)=-3$.
3. (6 points) Given the matrix $A=\left[\begin{array}{lllll}1 & 0 & 2 & 1 & 1 \\ 4 & 0 & 8 & 4 & 4 \\ 2 & 0 & 3 & 2 & 1\end{array}\right]$, find a basis for each of the following subspaces.
(a) $\operatorname{Col}(A)$
(b) $\operatorname{Row}(A)$
(c) $\operatorname{Nul}\left(A^{T}\right)$
4. (2 points) Suppose \mathbf{u} is a solution to $A \mathbf{x}=\mathbf{b}$ and \mathbf{v} is a solution to $A \mathbf{x}=\mathbf{0}$. Show that $\mathbf{w}=3 \mathbf{u}-4 \mathbf{v}$ is a solution to $A \mathbf{x}=3 \mathbf{b}$.
5. (6 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the vertical expansion by a factor of 2 and let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the (counter-clockwise) rotation about the origin by $\pi / 2$ radians.
(a) Find the standard matrix of the composite $S \circ T$.
(b) Let \mathcal{R} denote the triangular region with vertices $(-1,-1),(4,0)$, and (3, 2). Make two sketches, one of \mathcal{R}, and the other of the image $(S \circ T)(\mathcal{R})$.
6. Let $A=\left[\begin{array}{rr}B & 0 \\ C & 2 I\end{array}\right]$, where B is invertible.
(a) (3 points) Find an expression for the partitioned matrix A^{-1}.
(b) (3 points) Use your work from part (a) to find the inverse of the matrix $\left[\begin{array}{rrrrr}2 & 4 & 0 & 0 & 0 \\ -1 & -5 & 0 & 0 & 0 \\ -1 & 1 & 2 & 0 & 0 \\ 2 & -3 & 0 & 2 & 0 \\ 2 & 1 & 0 & 0 & 2\end{array}\right]$.
(c) (1 point) Use your previous result to find the inverse of $\left[\begin{array}{rrrrr}2 & -1 & -1 & 2 & 2 \\ 4 & -5 & 1 & -3 & 1 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$.
7. Consider the matrix $A=\left[\begin{array}{rrr}0 & 0 & 1 \\ 0 & -1 / 2 & 2 \\ 1 & 3 & 12\end{array}\right]$.
(a) (3 points) Find A^{-1} by row reduction.
(b) (4 points) Express the matrix A as a product of elementary matrices.
8. (3 points) Let A and B be invertible $n \times n$ matrices. Given that B is symmetric, determine whether the matrix $A B^{-1} A^{T}-B$ is also symmetric. Justify your answer.
9. (3 points) Solve for the matrix X in the equation below:

$$
(3 X B)^{-1}+A=X^{-1}
$$

Assume that all matrices involved are invertible.
10. (4 points) Given the matrix $A=\left[\begin{array}{rrrr}2 & 2 & 3 & 3 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 3 & 4 \\ 0 & -1 & 2 & -3\end{array}\right]$, find the determinant of A.
11. (6 points) Given A, B, and C are 2×2 matrices such that $\operatorname{det}(A)=3$, $\operatorname{det}(B)=-2$, and $\operatorname{det}(C)=0$, evaluate the following determinants.
(a) $\operatorname{det}\left(\left(3 A B^{2}\right)^{-1}\right)$
(b) $\operatorname{det}(A C+B C)$
(c) $\operatorname{det}\left(A^{-1}+\operatorname{adj}(A)\right)$
12. (7 points) Let $\mathcal{H}=\left\{A \in M_{2 \times 2}: \operatorname{det} A=0\right\}$.
(a) Find two matrices in \mathcal{H}, neither of which is a scalar multiple of the other.
(b) Is \mathcal{H} closed under addition?
(c) Is \mathcal{H} closed under scalar multiplication?
(d) Is \mathcal{H} a subspace of $M_{2 \times 2}$?
13. (4 points) Let $\mathbf{v}=\left[\begin{array}{c}2 \\ -3\end{array}\right]$ and $\mathcal{S}=\left\{A \in \mathbb{M}_{2 \times 2}: A \mathbf{v}=\mathbf{0}\right\}$. Find a basis for \mathcal{S}.
14. (4 points) Let W be the set of all polynomials \mathbf{p} in \mathbb{P}_{3} such that $\mathbf{p}(1)=0$ and $\mathbf{p}^{\prime}(-1)=0$. Find a basis for W.
15. (6 points) Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$.
(a) Find an equation of the form $a x_{1}+b x_{2}+c x_{3}=d$ for the plane spanned by \mathbf{u} and \mathbf{v}.
(b) Show that the line $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}2 \\ 6 \\ 2\end{array}\right]+t\left[\begin{array}{l}9 \\ 2 \\ 4\end{array}\right]$ is entirely contained on the plane spanned by \mathbf{u} and \mathbf{v}.
16. Consider the plane $\mathcal{P}: 2 x-4 y+2 z=6$, the line $\mathcal{L}: \mathbf{x}=\left[\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right]+t\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right]$, and the point $Q(1,6,0)$.
(a) (1 point) Find an equation for the line through the origin and the point Q.
(b) (2 points) Find the cosine of the angle between the plane \mathcal{P} and the $y z$-plane.
(c) (3 points) Find the distance from the point Q to the line \mathcal{L}.
(d) (4 points) Find the point on the plane \mathcal{P} that is closest to the point Q.
(e) (3 points) Find an equation of the form $a x+b y+c z=d$ for the plane that contains the line \mathcal{L} and is perpendicular to the plane \mathcal{P}.
17. (4 points) Let $\mathbf{u}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-3 \\ k \\ k^{2}\end{array}\right]$.
(a) Find all values of k for which \mathbf{u} and \mathbf{v} are orthogonal.
(b) Find a unit vector that is orthogonal to \mathbf{u}.
18. (3 points) Let $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ be a set of linearly independent vectors in \mathbb{R}^{3}.
(a) Simplify $\mathbf{u} \cdot[(\mathbf{v}-\mathbf{u}) \times(\mathbf{w}-\mathbf{u})]$.
(b) True or false: the parallelepiped with sides \mathbf{u}, \mathbf{v} and \mathbf{w} has the same volume as the parallelepiped with sides $\mathbf{u}, \mathbf{v}-\mathbf{u}$, and $\mathbf{w}-\mathbf{u}$.
19. (3 points) Show that if $\{\mathbf{a}, \mathbf{b}\}$ is linearly independent, then $\{\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}\}$ is also linearly independent.
20. (4 points) Complete the following statements with "must", "might", or "cannot", as appropriate.
(a) If A is a product of elementary matrices, then $\operatorname{det}(A) \ldots$ equal zero.
(b) Two lines in \mathbb{R}^{3} that are both perpendicular to a third line \qquad be parallel.
(c) If matrix $A B$ is invertible, then A \qquad be invertible.
(d) Given a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$, the kernel of T \qquad be a plane.

ANSWERS

1. (a) $a \neq-1, a \neq 1$, and $a \neq 4$
(b) $a=4$
(c) $a=-1$ or $a=1$
2. $p(x)=x^{4}-2 x^{3}-3 x^{2}+x+2$
3. (a) $\left\{\left[\begin{array}{l}1 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 8 \\ 3\end{array}\right]\right\} \quad$ (b) $\left\{\left[\begin{array}{lllll}1 & 0 & 2 & 1 & 1\end{array}\right],\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 1\end{array}\right]\right\} \quad$ (c) $\left\{\left[\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right]\right\}$
4. $A \mathbf{w}=A(3 \mathbf{u}-4 \mathbf{x})=3 A \mathbf{u}-4 A \mathbf{v}=3 \mathbf{b}-4 \cdot \mathbf{0}=3 \mathbf{b}$
5. (a) $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{rr}0 & -2 \\ 1 & 0\end{array}\right]$
(b)

6. (a) $\left[\begin{array}{rr}B^{-1} & 0 \\ -\frac{1}{2} C B^{-1} & \frac{1}{2} I\end{array}\right]$ (b) $\left[\begin{array}{rrrrr}5 / 6 & 2 / 3 & 0 & 0 & 0 \\ -1 / 6 & -1 / 3 & 0 & 0 & 0 \\ 1 / 2 & 1 / 2 & 1 / 2 & 0 & 0 \\ -13 / 12 & -7 / 6 & 0 & 1 / 2 & 0 \\ -3 / 4 & -1 / 2 & 0 & 0 & 1 / 2\end{array}\right]$ (c) Transpose of answer in part (b)
7. (a) $A^{-1}=\left[\begin{array}{rrr}-24 & 6 & 1 \\ 4 & -2 & 0 \\ 1 & 0 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 0 & 24 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & 1\end{array}\right]$
8. Yes, as $\left(A B^{-1} A^{T}-B\right)^{T}=\left(A B^{-1} A^{T}\right)^{T}-B^{T}=A\left(B^{-1}\right)^{T} A^{T}-B=A\left(B^{T}\right)^{-1} A^{T}-B=A B^{-1} A^{T}-B$
9. $X=A^{-1}\left(I-\frac{1}{3} B^{-1}\right)$
10. $\operatorname{det}(A)=3$
11. (a) $\frac{1}{108}$
(b) 0
(c) $\frac{16}{3}$
12. (a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ (many answers)
(b) No. $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] \in \mathcal{H}$ however $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \notin \mathcal{H}$
(c) Yes. Given $A \in \mathcal{H}, k \in \mathbb{R}, \operatorname{det}(k A)=k^{2} \operatorname{det} A=k^{2} \cdot 0=0$
(d) No, as \mathcal{H} is not closed under vector addition.
13. $\left\{\left[\begin{array}{ll}3 & 2 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 3 & 2\end{array}\right]\right\}$
14. $\left\{3 x^{3}+2 x^{2}-5 x, 2 x^{3}+3 x^{2}-5\right\}$
15. (a) $2 x_{1}+x_{2}-5 x_{3}=0$
(b) $2 x_{1}+x_{2}-5 x_{3}=2(2+9 t)+(6+2 t)-5(2+4 t)=0$
16. (a) $\mathrm{x}=t\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right]$
(b) Using $\mathbf{u}=\left[\begin{array}{c}2 \\ -4 \\ 5\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \cos (\theta)=\frac{1}{\sqrt{6}} \quad$ (c) $\sqrt{3}$ units
(d) $\left(\frac{10}{3}, \frac{4}{3}, \frac{7}{3}\right)$
(e) $y+2 z=7$
17. (a) $k=-2$ and $k=3$
(b) $\left[\begin{array}{c}0 \\ 1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ (many answers)
18. (a) $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$
(b) True
19. Show that if $c_{1}(\mathbf{a}-\mathbf{b})+c_{2}(\mathbf{a}+\mathbf{b})=0$, then $c_{1}=0$ and $c_{2}=0$.
$c_{1}(\mathbf{a}-\mathbf{b})+c_{2}(\mathbf{a}+\mathbf{b})=0 \rightarrow c_{1} \mathbf{a}-c_{1} \mathbf{b}+c_{2} \mathbf{a}+c_{2} \mathbf{b}=0 \rightarrow\left(c_{1}+c_{2}\right) \mathbf{a}+\left(-c_{1}+c_{2}\right) \mathbf{b}=0$
As a and \mathbf{b} are linearly independent, $c_{1}+c_{2}=0$ and $-c_{1}+c_{2}=0$. Solving this system of two equations gives $c_{1}=0$ and $c_{2}=0$.
20. (a) cannot
(b) might
(c) might
(d) might
