1. (4 points) Find a polynomial $p(x)$ of degree 2 such that $p(1)=1, p(2)=6$, and $p^{\prime}(2)=6$.
2. (4 points) Consider the following system:

$$
\left\{\begin{aligned}
2 x+3 y+4 z & =3 \\
2 x+(h+1) y+6 z & =4 \\
4 x+6 y+(h-4) z & =k-1
\end{aligned}\right.
$$

Find all value(s) of h and k such that the system has:
(a) A unique solution.
(b) Infinitely many solutions.
(c) No solution.
** Be very clear about your combinations of \boldsymbol{h} and \boldsymbol{k} in each case **
3. (10 points) Consider the following matrix A and its reduced row echelon form B given below.
$A=\left[\begin{array}{rrcccc}2 & 1 & -1 & 1 & 0 & 3 \\ 3 & 4 & -14 & 1 & 0 & 14 \\ 1 & -1 & 7 & 2 & 0 & -9 \\ -3 & -2 & 4 & 3 & 0 & -24\end{array}\right] \quad B=\left[\begin{array}{rrrrrr}1 & 0 & 2 & 0 & 0 & 2 \\ 0 & 1 & -5 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a) Find a basis for each of the following sets.
(i) $\operatorname{Col}(A)$
(ii) $\operatorname{Col}\left(A^{T}\right)$
(iii) $\operatorname{Nul}(A)$
(b) Determine the dimension of $\operatorname{Nul}\left(A^{T}\right)$.
(c) Write the fourth column of matrix A as a linear combination of the other columns of A.
(d) Determine a vector that is in $\operatorname{Nul}(A)$ whose first and second entries are 18 and -5 , respectively.
(e) Given that $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6\end{array}\right]$ is a particular solution to $A \mathbf{x}=\mathbf{b}$, determine the general solution to $A \mathbf{x}=\mathbf{b}$.
4. (3 points) Let $A=\left[\begin{array}{lll}k & 1 & 2 \\ 1 & k & 1 \\ 1 & 1 & 1\end{array}\right]$.
(a) Find $\operatorname{det}(A)$ in terms of k.
(b) Find all values for k such that A is non-invertible.
5. (6 points) Let S and T both be linear transformations from \mathbb{R}^{2} to \mathbb{R}^{2}. Let S be the transformation that reflects vectors through the x-axis. Let T be a horizontal shear such that $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
(a) Find the standard matrix A of transformation S.
(b) Find the standard matrix B of transformation T.
(c) Find the standard matrix C of transformation $S \circ T$.
(d) Find a non-zero vector $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ such that $S(\mathbf{v})=T(\mathbf{v})$.
6. (5 points) Let $A=\left[\begin{array}{rr}2 & 4 \\ 2 & 6 \\ -1 & 6 \\ 0 & -6\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}-6 \\ -14 \\ -29 \\ 24\end{array}\right]$.
(a) Determine an $L U$ - factorization for matrix A.
(b) Use your answer in part (a) to solve the equation $A \mathbf{x}=\mathbf{b}$.
7. (3 points) Express the matrix $\left[\begin{array}{ll}2 & 4 \\ 2 & 3\end{array}\right]$ as a product of elementary matrices.
8. (3 points) Given $A=\left[\begin{array}{rr}-2 & 6 \\ 4 & -7\end{array}\right]$, find a matrix X such that $X A-X A^{T}=A$.
9. (4 points) Let A and B be 4×4 matrices where $\operatorname{det}(A)$ is unknown and $\operatorname{det}(B)=-2$.
(a) If $A^{T} A=2 I$. What are the possible values of $\operatorname{det}(A)$?
(b) Find $\operatorname{det}\left(\left(B^{-1}\right)^{3} \operatorname{adj} B\right)$.
10. (3 points) Let A be a 3×3 matrix such that $A\left[\begin{array}{l}4 \\ 6 \\ 9\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right], A\left[\begin{array}{l}6 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{r}0 \\ -2 \\ 0\end{array}\right]$, and $A\left[\begin{array}{l}4 \\ 3 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
(a) Find a vector \mathbf{u} such that $A \mathbf{u}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
(b) Determine A^{-1}.
11. (2 points) Matrix A is called "skew-symmetric" if $A^{T}=-A$. Given that $n \times n$ matrices A and B are skew-symmetric and $A B=-B A$, show that matrix $A B$ must also be skew-symmetric.
12. (3 points) Consider a single matrix A with all the following properties:

- A is in RREF.
- The first two columns of A form a linearly independent set.
- The null space of A is in \mathbb{R}^{5}.
- The span of the fourth column of A is a point in \mathbb{R}^{3}.
- The dimension of the null space of A is greater than the rank of A.
(a) What size matrix must A be?
(b) Give an example of a matrix that satisfies all the conditions above.

13. (3 points) Let $\left[\begin{array}{cc}W & O \\ X & Y \\ Z & I\end{array}\right]\left[\begin{array}{cc}A & 0 \\ B & I\end{array}\right]=\left[\begin{array}{cc}I & O \\ O & A \\ O & I\end{array}\right]$. Given that A is a square matrix, express the block entries W, X, Y, and Z in terms of A and B. Justify each step.
14. (7 points) Let $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $T(p(x))=\left[\begin{array}{c}p(1) \\ p^{\prime}(0)\end{array}\right]$.
(a) Find the image of $q(x)=x+x^{2}$ under transformation T.
(b) Find a polynomial $r(x)$ such that $T(r(x))=\left[\begin{array}{l}5 \\ 2\end{array}\right]$.
(c) Find a basis for the kernel of T.
(d) Is T a one-to-one transformation? Justify.
15. (6 marks) Let $\mathcal{H}=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}: x(2 y-3 z)=0\right\}$.
(a) Is \mathcal{H} closed under vector addition? Justify.
(b) Is \mathcal{H} closed under scalar multiplication? Justify.
(c) Is \mathcal{H} a subspace of \mathbb{R}^{3} ?
16. (3 points) Let $\mathcal{H}=\left\{\mathbf{x} \in \mathbb{R}^{4}: \mathbf{x} \cdot\left[\begin{array}{r}1 \\ 3 \\ 0 \\ 2\end{array}\right]=0\right\}$. Given that \mathcal{H} is a subspace of \mathbb{R}^{4}, find a basis for \mathcal{H}.
17. (3 points) Let $p(x)=2+3 x-x^{2}, q(x)=-3-5 x+3 x^{2}$, and $r(x)=4+3 x+7 x^{2}$. Show that
$r(x) \in \operatorname{Span}\{p(x), q(x)\}$.
18. (8 points) Given the planes $\mathcal{P}_{1}: 2 x-y+5 z=8$ and $\mathcal{P}_{2}: x-y+2 z=4$, and given the point $A(5,-3,2)$.
(a) Find the cosine of the angle between the planes \mathcal{P}_{1} and \mathcal{P}_{2}.
(b) Find the point on the plane \mathcal{P}_{1} closest to A.
(c) Find an equation for the line containing point A that is parallel to both \mathcal{P}_{1} and \mathcal{P}_{2}.
19. (5 points) Given the line $\mathcal{L}: \mathbf{x}=\left[\begin{array}{l}k \\ 2 \\ 0\end{array}\right]+t\left[\begin{array}{r}h \\ 1 \\ -2\end{array}\right]$ and the plane $\mathcal{P}: x-2 y+4 z=0$, find conditions on h and k for each of the following cases.

** Be very clear about your combinations of \boldsymbol{h} and \boldsymbol{k} in each case **

(a) $\quad \mathcal{L}$ and \mathcal{P} are parallel and do not intersect.
(b) \mathcal{L} is contained within plane \mathcal{P}.
(c) $\quad \mathcal{L}$ and \mathcal{P} intersect at a point.
20. (9 points) Given the points $P(0,0,-2), Q(2,3,4), R(4,6,5)$, and $S(6,11,10)$, find the following:
(a) The area of triangle $P Q R$.
(b) An equation of the form $a x+b y+c z=d$ for the plane containing points P, Q, and R.
(c) The volume of the parallelepiped with edges $\overrightarrow{P Q}, \overrightarrow{P R}$, and $\overrightarrow{P S}$.
(d) A point on the line through P and Q which is two units away from P.
21. (2 points) Show that if $\operatorname{Proj}_{\mathbf{v}} \mathbf{u}=\operatorname{Proj}_{\mathbf{v}} \mathbf{w}$, then $\mathbf{u}-\mathbf{w}$ is orthogonal to \mathbf{v}.
22. (4 points) Complete the following sentences with the word must, might or, cannot, as appropriate.
(a) If \mathbf{u} is in $\operatorname{Span}\{\mathbf{v}\}$, then \mathbf{v} \qquad be in $\operatorname{Span}\{\mathbf{u}\}$.
(b) If A is invertible, then $\operatorname{Row}(A)$ \qquad be identical to $\operatorname{Col}(A)$.
(c) If the 3×3 coefficient matrix A of the system of linear equations $A \mathbf{x}=\mathbf{b}$ has rank 2 , then the system \qquad be inconsistent when $\mathbf{b}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
(d) If A, B, and C are square matrices such that $A B C^{2}=I$ then matrix C \qquad be invertible.

ANSWERS

1. $p(x)=-2+2 x+x^{2}$
2. (a) $h \neq 2$ or $12, k \in \mathbb{R}$ (b) $h=12$ and $k=7$ OR $h=2$ and $k=2$ (c) $h=12$ and $k \neq 7$ OR $h=2$ and $k \neq 2$
3.

(a) (i) $\left\{\left[\begin{array}{r}2 \\ 3 \\ 1 \\ -3\end{array}\right],\left[\begin{array}{r}1 \\ 4 \\ -1 \\ -2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 3\end{array}\right]\right\}$
(ii) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 0 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -5 \\ 0 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{r}0 \\ 0 \\ 0 \\ 1 \\ 0 \\ -4\end{array}\right]\right\}$
(iii) $\left\{\left[\begin{array}{r}-2 \\ 5 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ -3 \\ 0 \\ 4 \\ 0 \\ 1\end{array}\right]\right\}$
(b) 1
(c) $\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 3\end{array}\right]=\frac{1}{2}\left[\begin{array}{r}2 \\ 3 \\ 1 \\ -3\end{array}\right]+\frac{3}{4}\left[\begin{array}{r}1 \\ 4 \\ -1 \\ -2\end{array}\right]-\frac{1}{4}\left[\begin{array}{r}3 \\ 14 \\ -9 \\ -24\end{array}\right]$
(d) $\left[\begin{array}{r}18 \\ -5 \\ -4 \\ -20 \\ 0 \\ -5\end{array}\right]$
(e) $\left\{\begin{array}{l}x_{1}=1-2 r-2 t \\ x_{2}=2+5 r-3 t \\ x_{3}=3+r \\ x_{4}=4+4 t \\ x_{5}=5+s \\ x_{6}=6+t\end{array}\right\}$
4. (a) $\operatorname{det}(A)=k^{2}-3 k+2$
(b) $k=1$ or 2
5. (a) $A=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
(b) $B=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
(c) $C=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{rr}1 & 2 \\ 0 & -1\end{array}\right]$
(d) $\mathbf{v}=\left[\begin{array}{c}k \\ 0\end{array}\right] ; k \in \mathbb{R}$
6. (a) $L U=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 / 2 & 4 & 1 & 0 \\ 0 & -3 & 0 & 1\end{array}\right]\left[\begin{array}{ll}2 & 4 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
(b) $L \mathbf{y}=\mathbf{b} \rightarrow \mathbf{y}=\left[\begin{array}{r}-6 \\ -8 \\ 0 \\ 0\end{array}\right] ; \quad U \mathbf{x}=\mathbf{y} \quad \rightarrow \quad \mathbf{x}=\left[\begin{array}{r}5 \\ -4\end{array}\right]$
7. $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{rr}1 & -4 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$ (many answers)
8. $\quad X=A\left(A-A^{T}\right)^{-1}=\left[\begin{array}{cc}3 & 1 \\ -7 / 2 & -2\end{array}\right]$
9. (a) $\operatorname{det}(A)= \pm 4 \quad$ (b) 1
10. (a) $\mathbf{u}=\left[\begin{array}{r}-3 \\ 0 \\ -1\end{array}\right] \quad$ (b) $A^{-1}=\left[\begin{array}{crr}4 / 3 & -3 & 4 \\ 2 & 0 & 3 \\ 3 & -1 & 1\end{array}\right]$
11. $(A B)^{T}=(-B A)^{T}=-A^{T} B^{T}=-(-A)(-B)=-(A B)$
12. (a) 3×5
(b) $A=\left[\begin{array}{lllll}1 & 0 & a & 0 & c \\ 0 & 1 & b & 0 & d \\ 0 & 0 & 0 & 0 & 0\end{array}\right] ; a, b, c, d \in \mathbb{R}$
13. $W=A^{-1}, \quad X=-A B A^{-1}, \quad Y=A, \quad Z=-B A^{-1}$
14. (a) $T(q(x))=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
(b) $r(x)=a+2 x+c x^{2}$; where $a+c=3$
(c) $\left\{1-x^{2}\right\}$
(d) No. Many counter-examples possible.
15. (a) No. Many counter-examples possible. (b) Yes. Given $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right] \epsilon \mathcal{H}$, show $k \mathbf{u}=\left[\begin{array}{l}k u_{1} \\ k u_{2} \\ k u_{3}\end{array}\right] \epsilon \mathcal{H}$ for all k. (c) No, not closed under addition.
16. $\left\{\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$
17. $r(x)=11 p(x)+6 q(x)$
18. (a) $\cos \theta=\frac{13}{6 \sqrt{5}}$
(b) $(4,-5 / 2,-1 / 2)$
(c) $\mathbf{x}=\left[\begin{array}{r}5 \\ -3 \\ 2\end{array}\right]+t\left[\begin{array}{r}3 \\ 1 \\ -1\end{array}\right]$
19. (a) $h=10$ and $k \neq 4$
(b) $h=10$ and $k=4$
(c) $h \neq 10$ and $k \in \mathbb{R}$
20. (a) $\frac{1}{2} \sqrt{325}$
(b) $15 x-10 y=0$
(c) 20 units 3
(d) $(4 / 7,6 / 7,-2 / 7)$ or $(-4 / 7,-6 / 7,-26 / 7)$
21. $\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\frac{\mathbf{w} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \quad \rightarrow \quad \mathbf{u} \cdot \mathbf{v}=\mathbf{w} \cdot \mathbf{v} \quad \rightarrow \quad \mathbf{u} \cdot \mathbf{v}-\mathbf{w} \cdot \mathbf{v}=0 \quad \rightarrow \quad(\mathbf{u}-\mathbf{w}) \cdot \mathbf{v}=0$
22. (a) might (not if \mathbf{u} is the zero vector)
(b) must (both equal all \mathbb{R}^{n})
(c) might (as that column changes during row-reduction)
(d) must (and $C^{-1}=A B C$)

