- (4 points) Find a polynomial p(x) of degree 2 such that p(1) = 1, p(2) = 6, and p'(2) = 6.
- (4 points) Consider the following system:

$$\begin{cases} 2x + 3y + 4z = 3\\ 2x + (h+1)y + 6z = 4\\ 4x + 6y + (h-4)z = k-1 \end{cases}$$

Find all value(s) of *h* and *k* such that the system has:

- A unique solution.
- Infinitely many solutions.
- No solution.

** Be very clear about your combinations of h and k in each case **

(10 points) Consider the following matrix A and its reduced row echelon form B given below.

$$A = \begin{bmatrix} 2 & 1 & -1 & 1 & 0 & 3 \\ 3 & 4 & -14 & 1 & 0 & 14 \\ 1 & -1 & 7 & 2 & 0 & -9 \\ -3 & -2 & 4 & 3 & 0 & -24 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 2 & 0 & 0 & 2 \\ 0 & 1 & -5 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 2 & 0 & 0 & 2 \\ 0 & 1 & -5 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Find a basis for each of the following sets.
 - (i) Col(*A*)
 - (ii) $Col(A^T)$
 - (iii) Nul(A)
- Determine the dimension of $Nul(A^T)$.
- Write the fourth column of matrix A as a linear combination of the other columns of A.
- Determine a vector that is in Nul(A) whose first and second entries are 18 and -5, respectively.
- (e) Given that $\begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$ is a particular solution to $A\mathbf{x} = \mathbf{b}$, determine the general solution to $A\mathbf{x} = \mathbf{b}$.
- **4**. (3 points) Let $A = \begin{bmatrix} k & 1 & 2 \\ 1 & k & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
 - Find det(A) in terms of k. (a)
 - Find all values for k such that A is non-invertible.
- **5.** (6 points) Let S and T both be linear transformations from \mathbb{R}^2 to \mathbb{R}^2 . Let S be the transformation that reflects vectors through the x-axis. Let T be a horizontal shear such that $T\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right) = \begin{bmatrix} 3\\1 \end{bmatrix}$.
 - Find the standard matrix A of transformation S.
 - (b) Find the standard matrix B of transformation T.
 - Find the standard matrix C of transformation $S \circ T$.
 - Find a non-zero vector $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ such that $S(\mathbf{v}) = T(\mathbf{v})$.
- (5 points) Let $A = \begin{bmatrix} 2 & 4 \\ 2 & 6 \\ -1 & 6 \\ 0 & -6 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} -6 \\ -14 \\ -29 \\ 24 \end{bmatrix}$.
 - Determine an LU- factorization for matrix A.
 - Use your answer in part (a) to solve the equation $A\mathbf{x} = \mathbf{b}$.

- 7. (3 points) Express the matrix $\begin{bmatrix} 2 & 4 \\ 2 & 3 \end{bmatrix}$ as a product of elementary matrices.
- **8.** (3 points) Given $A = \begin{bmatrix} -2 & 6 \\ 4 & -7 \end{bmatrix}$, find a matrix X such that $XA XA^T = A$.
- **9.** (4 points) Let A and B be 4×4 matrices where det(A) is unknown and det(B) = -2.
 - (a) If $A^T A = 2I$. What are the possible values of det(A)?
 - (b) Find det($(B^{-1})^3$ adj B).
- **10.** (3 points) Let A be a 3×3 matrix such that $A \begin{bmatrix} 4 \\ 6 \\ 9 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$, $A \begin{bmatrix} 6 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}$, and $A \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.
 - (a) Find a vector **u** such that A**u** = $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
 - (b) Determine A^{-1} .
- 11. (2 points) Matrix A is called "skew-symmetric" if $A^T = -A$. Given that $n \times n$ matrices A and B are skew-symmetric and AB = -BA, show that matrix AB must also be skew-symmetric.
- **12.** (3 points) Consider a single matrix A with all the following properties:
 - A is in RREF.
 - The first two columns of *A* form a linearly independent set.
 - The null space of A is in \mathbb{R}^5 .
 - The span of the fourth column of *A* is a point in \mathbb{R}^3 .
 - The dimension of the null space of *A* is greater than the rank of *A*.
 - (a) What size matrix must A be?
 - (b) Give an example of a matrix that satisfies all the conditions above.
- **13.** (3 points) Let $\begin{bmatrix} W & O \\ X & Y \\ Z & I \end{bmatrix} \begin{bmatrix} A & O \\ B & I \end{bmatrix} = \begin{bmatrix} I & O \\ O & A \\ O & I \end{bmatrix}$. Given that A is a square matrix, express the block entries W, X, Y, and Z in terms of A and B.

Justify each step.

- **14.** (7 points) Let $T: \mathbb{P}_2 \to \mathbb{R}^2$ be the linear transformation defined by $T(p(x)) = \begin{bmatrix} p(1) \\ p'(0) \end{bmatrix}$
 - (a) Find the image of $q(x) = x + x^2$ under transformation T.
 - (b) Find a polynomial r(x) such that $T(r(x)) = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$.
 - (c) Find a basis for the kernel of *T*.
 - (d) Is *T* a one-to-one transformation? Justify.
- **15.** (6 marks) Let $\mathcal{H} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : x(2y 3z) = 0 \right\}$.
 - (a) Is \mathcal{H} closed under vector addition? Justify.
 - (b) Is \mathcal{H} closed under scalar multiplication? Justify.
 - (c) Is \mathcal{H} a subspace of \mathbb{R}^3 ?
- **16.** (3 points) Let $\mathcal{H} = \left\{ \mathbf{x} \in \mathbb{R}^4 : \mathbf{x} \cdot \begin{bmatrix} 1 \\ -3 \\ 0 \\ 2 \end{bmatrix} = 0 \right\}$. Given that \mathcal{H} is a subspace of \mathbb{R}^4 , find a basis for \mathcal{H} .
- 17. (3 points) Let $p(x) = 2 + 3x x^2$, $q(x) = -3 5x + 3x^2$, and $r(x) = 4 + 3x + 7x^2$. Show that $r(x) \in \text{Span}\{p(x), q(x)\}$.
- **18.** (8 points) Given the planes \mathcal{P}_1 : 2x y + 5z = 8 and \mathcal{P}_2 : x y + 2z = 4, and given the point A(5, -3, 2).
 - (a) Find the cosine of the angle between the planes \mathcal{P}_1 and \mathcal{P}_2 .
 - (b) Find the point on the plane \mathcal{P}_1 closest to A.

(c) Find an equation for the line containing point A that is parallel to both \mathcal{P}_1 and \mathcal{P}_2 .

19. (5 points) Given the line $\mathcal{L}: \mathbf{x} = \begin{bmatrix} k \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} h \\ 1 \\ -2 \end{bmatrix}$ and the plane $\mathcal{P}: x - 2y + 4z = 0$, find conditions on h and k for each of the following cases.

** Be very clear about your combinations of h and k in each case **

(a) \mathcal{L} and \mathcal{P} are parallel and do not intersect.

(b) \mathcal{L} is contained within plane \mathcal{P} .

(c) \mathcal{L} and \mathcal{P} intersect at a point.

20. (9 points) Given the points P(0,0,-2), Q(2,3,4), R(4,6,5), and S(6,11,10), find the following:

(a) The area of triangle PQR.

(b) An equation of the form ax + by + cz = d for the plane containing points P, Q, and R.

(c) The volume of the parallelepiped with edges \overrightarrow{PQ} , \overrightarrow{PR} , and \overrightarrow{PS} .

(d) A point on the line through P and Q which is two units away from P.

21. (2 points) Show that if $Proj_{\mathbf{v}}\mathbf{u} = Proj_{\mathbf{v}}\mathbf{w}$, then $\mathbf{u} - \mathbf{w}$ is orthogonal to \mathbf{v} .

22. (4 points) Complete the following sentences with the word must, might or, cannot, as appropriate.

(a) If \mathbf{u} is in Span{ \mathbf{v} }, then \mathbf{v} be in Span{ \mathbf{u} }.

(b) If A is invertible, then Row(A) be identical to Col(A).

(c) If the 3×3 coefficient matrix A of the system of linear equations $A\mathbf{x} = \mathbf{b}$ has rank 2, then the system _____ be inconsistent when $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

(d) If A, B, and C are square matrices such that $ABC^2 = I$ then matrix C ______ be invertible.

ANSWERS

1. $p(x) = -2 + 2x + x^2$

2. (a) $h \neq 2$ or $12, k \in \mathbb{R}$ (b) h = 12 and k = 7 OR h = 2 and k = 2 (c) h = 12 and $k \neq 7$ OR h = 2 and $k \neq 2$

3. (a) (i) $\left\{ \begin{bmatrix} 2\\3\\1\\-3 \end{bmatrix}, \begin{bmatrix} 1\\4\\-1\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\2\\3 \end{bmatrix} \right\}$ (ii) $\left\{ \begin{bmatrix} 1\\0\\2\\0\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\-5\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\\-4 \end{bmatrix} \right\}$ (iii) $\left\{ \begin{bmatrix} -2\\5\\1\\0\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\-3\\0\\4\\0\\1 \end{bmatrix} \right\}$ (b)

(c) $\begin{bmatrix} 1\\1\\2\\3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2\\3\\1\\-3 \end{bmatrix} + \frac{3}{4} \begin{bmatrix} 1\\4\\-1\\-2 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 3\\14\\-9\\-24 \end{bmatrix}$ (d) $\begin{bmatrix} 18\\-5\\-4\\-20\\0\\-5 \end{bmatrix}$ (e) $\begin{cases} x_1 = 1 - 2r - 2t\\x_2 = 2 + 5r - 3t\\x_3 = 3 + r\\x_4 = 4 + 4t\\x_5 = 5 + s\\x_6 = 6 + t \end{cases}$

4. (a) $det(A) = k^2 - 3k + 2$ (b) k = 1 or 2

 $\mathbf{5.} \quad \text{(a)} \ \ A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \text{(b)} \ \ B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \qquad \text{(c)} \ \ C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \qquad \text{(d)} \ \ \mathbf{v} = \begin{bmatrix} k \\ 0 \end{bmatrix} \ ; k \in \mathbb{R}$

6. (a) $LU = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1/2 & 4 & 1 & 0 \\ 0 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ (b) $L\mathbf{y} = \mathbf{b} \rightarrow \mathbf{y} = \begin{bmatrix} -6 \\ -8 \\ 0 \\ 0 \end{bmatrix}$; $U\mathbf{x} = \mathbf{y} \rightarrow \mathbf{x} = \begin{bmatrix} 5 \\ -4 \end{bmatrix}$

7. $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (many answers)

8. $X = A(A - A^T)^{-1} = \begin{bmatrix} 3 & 1 \\ -7/2 & -2 \end{bmatrix}$

9. (a) $det(A) = \pm 4$ (b) 1

10. (a)
$$\mathbf{u} = \begin{bmatrix} -3 \\ 0 \\ -1 \end{bmatrix}$$
 (b) $A^{-1} = \begin{bmatrix} 4/3 & -3 & 4 \\ 2 & 0 & 3 \\ 3 & -1 & 1 \end{bmatrix}$

- **11.** $(AB)^T = (-BA)^T = -A^TB^T = -(-A)(-B) = -(AB)$
- **12.** (a) 3×5 (b) $A = \begin{bmatrix} 1 & 0 & a & 0 & c \\ 0 & 1 & b & 0 & d \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$; $a, b, c, d \in \mathbb{R}$
- **13.** $W = A^{-1}$, $X = -ABA^{-1}$, Y = A, $Z = -BA^{-1}$
- **14.** (a) $T(q(x)) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ (b) $r(x) = a + 2x + cx^2$; where a + c = 3 (c) $\{1 x^2\}$ (d) No. Many counter-examples possible.
- **15.** (a) No. Many counter-examples possible. (b) Yes. Given $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \epsilon \mathcal{H}$, show $k\mathbf{u} = \begin{bmatrix} ku_1 \\ ku_2 \\ ku_3 \end{bmatrix} \epsilon \mathcal{H}$ for all k. (c) No, not closed under addition.
- **16.** $\left\{ \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$
- **17.** r(x) = 11p(x) + 6q(x)
- **18.** (a) $\cos \theta = \frac{13}{6\sqrt{5}}$ (b) (4, -5/2, -1/2) (c) $\mathbf{x} = \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix} + t \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$
- **19.** (a) h = 10 and $k \neq 4$ (b) h = 10 and k = 4 (c) $h \neq 10$ and $k \in \mathbb{R}$
- **20.** (a) $\frac{1}{2}\sqrt{325}$ (b) 15x 10y = 0 (c) 20 units³ (d) (4/7, 6/7, -2/7) or (-4/7, -6/7, -26/7)
- $\mathbf{21.} \quad \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{\mathbf{w} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \quad \rightarrow \quad \mathbf{u} \cdot \mathbf{v} = \mathbf{w} \cdot \mathbf{v} \quad \rightarrow \quad \mathbf{u} \cdot \mathbf{v} \mathbf{w} \cdot \mathbf{v} = 0 \quad \rightarrow \quad (\mathbf{u} \mathbf{w}) \cdot \mathbf{v} = 0$
- 22. (a) might (not if \mathbf{u} is the zero vector) (b) must (both equal all \mathbb{R}^n) (c) might (as that column changes during row-reduction) (d) must (and $C^{-1} = ABC$)