1. (8 points) Given $A=\left[\begin{array}{llll}2 & -4 & 2 & 2 \\ 3 & -7 & 2 & 2 \\ 4 & -7 & 5 & 3\end{array}\right], \mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{r}0 \\ -9 \\ -1\end{array}\right]$.
(a) Find the general solution to the equation $A \mathbf{x}=\mathbf{b}$. Give your answer in parametric vector form.
(b) Find a specific solution to the equation $A \mathbf{x}=\mathbf{b}$ such that $x_{1}=x_{2}$.
(c) Write the third column of A as a linear combination of the first two columns of A or explain why it is not possible to do so.
(d) True or False: There exists a vector $\mathbf{c} \in \mathbb{R}^{3}$ such that $A \mathbf{x}=\mathbf{c}$ does not have a solution.
(e) True or False: The last three columns of A form an invertible matrix.
2. (3 points) The graph of $y=a x^{2}+b x+c$ contains the point $(3,27)$ and $(2,-6)$. The tangent line at $x=2$ has slope 12. Set up (but do not solve) a linear system for finding a, b, and c.
3. (4 points) Given $A=\left[\begin{array}{rrr}\frac{1}{2} & \frac{1}{2} & \frac{3}{2} \\ 2 & 3 & -1 \\ 0 & -1 & 8\end{array}\right]$
(a) Find A^{-1}
(b) Given that $\operatorname{det}(A)=\frac{1}{2}$, find $\operatorname{adj}(A)$.
4. (3 points) Given that $\operatorname{det}\left(\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\right)=10$, find $\operatorname{det}\left(\left[\begin{array}{cccc}3 g+a & 3 h+b & 2 & 3 i+c \\ d+2 a & e+2 b & 3 & f+2 c \\ a & b & 4 & c \\ 0 & 0 & 5 & 0\end{array}\right]\right)$
5. (3 points) Matrices A and B are invertible. Solve for X in the matrix equation

$$
A^{-1} B(X+I)^{-1} A=2 A
$$

6. (6 points) You are given the block matrix $B=\left[\begin{array}{cc}O & A \\ I & O\end{array}\right]$, where A is invertible.
(a) Find B^{-1}
(b) Find B^{4}
(c) If $A^{5}=I$ (but $A \neq I$), find the smallest positive integer m so that $B^{m}=I$.
7. (7 points) You are given $A=\left[\begin{array}{rrrr}3 & 6 & 3 & 21 \\ -2 & -4 & -2 & -14 \\ -1 & -2 & 2 & 2\end{array}\right]$ and its reduced row echelon form $R=\left[\begin{array}{llll}1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$.
(a) Find a basis for $\operatorname{Col}(A)$.
(b) Find a basis for $\operatorname{Row}(A)$.
(c) Find a basis for $\operatorname{Nul}(A)$
(d) State the dimension of $\operatorname{Nul}\left(A^{T}\right)$.
(e) Circle the answer that correctly completes the sentence.

The column space of A is \qquad .

1. empty
2. a point
3. a line
4. a plane
5. all of \mathbb{R}^{3}
6. all of \mathbb{R}^{4}
7. (5 points) Let A be an $m \times n$ matrix such that $n>m$.
(a) Explain why $A \mathbf{x}=\mathbf{0}$ has a non-trivial solution.
(b) What size is the matrix $A^{T} A$?
(c) Explain why $A^{T} A$ cannot be invertible.
8. (4 points) Let $H=\left\{A \in M_{2 \times 2}: A^{2}=A+A^{T}\right\}$.
(a) For what values of c is $\left[\begin{array}{ll}1 & c \\ c & 1\end{array}\right]$ in H ?
(b) Show that H is not a subspace of $M_{2 \times 2}$.
9. (4 points) Find a basis for the vector space $V=\left\{p \in \mathbb{P}_{3}: p(1)=p(2)\right\}$.
10. (3 points) Given each of the following matrices, indicate whether the columns are a linearly independent ("L.I.") or a linearly dependent ("L.D.") set. No justification is necessary.
(a) A 4×5 matrix with a pivot in every row.
(b) The product of two elementary matrices.
(c) The standard matrix of a one-to-one matrix transformation.
11. (12 points) A, B, and C are all $n \times n$ matrices (but n is not provided). You are given the following information.

- $\operatorname{det}(A)=2$
- $\operatorname{det}(2 A)=32$
- $\operatorname{det}(A B)=6$
- $\operatorname{dim}(\operatorname{Nul}(A C))=1$

Find each of the following:
(a) $\operatorname{det}\left(A^{5} A^{T}\right)$
(b) $\operatorname{det}\left(B^{-1}\right)$
(c) n
(d) $\operatorname{det}(-A)$
(e) $\operatorname{det}(B C)$
(f) $\operatorname{rank}(A B)$
13. (4 points) Let $A=\left[\begin{array}{ccc}3 & 4 & 1 \\ 9 & 11 & 5 \\ -6 & 13 & 8\end{array}\right]$. Find the $L U$ factorization of A.
14. (5 points) You are given the following two lines.
\mathcal{L}_{1} is $\mathbf{x}=\left[\begin{array}{r}0 \\ -4 \\ -2\end{array}\right]+s\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$, and \mathcal{L}_{2} is $\mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 5\end{array}\right]+t\left[\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right]$.
(a) Find the point of intersection of \mathcal{L}_{1} and \mathcal{L}_{2}.
(b) Find the cosine of the angle θ formed between \mathcal{L}_{1} and \mathcal{L}_{2}.
(c) Is the angle θ between 0 and $\frac{\pi}{3}$?
15. (4 points) Find the point on the line $\mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+t\left[\begin{array}{r}-3 \\ 2 \\ 1\end{array}\right]$ that is nearest to $(-9,15,-1)$.
16. (3 points) Find the area of the triangle formed by the points $A(4,2,1), B(3,1,5)$, and $C(2,3,6)$
17. (3 points) Find an equation for the line that contains the origin and is parallel to both of the following planes: $x+y+z=1$, and $2 x-y+z=3$.
18. (6 points) Let $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the reflection across the y-axis. Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the vertical shear transformation such that $S\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=\left[\begin{array}{c}1 \\ -5\end{array}\right]$.
(a) Find the standard matrix for R.
(b) Find the standard matrix for S.
(c) Find the standard matrix for $S^{-1} \circ R$.
19. (2 points) Let Q be a solid object with volume 7 .

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $T(\mathbf{x})=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & k & 0 \\ 2 & 5 & 2\end{array}\right] \mathbf{x}$.
Find all k so that the volume of $T(Q)$ is 35 .
20. (5 points) Complete each of the following sentences with MUST, MIGHT, or CANNOT.
(a) Let A be a square matrix. If $A \mathbf{x}=A \mathbf{y}$ for distinct \mathbf{x} and \mathbf{y}, then A \qquad be invertible.
(b) Let T be a matrix transformation with standard matrix A. The kernel of T \qquad equal the null space of A. The range of T \qquad equal the column space of A.
(c) Let $S=\{\mathbf{u}, \mathbf{v}\}$ be a set of vectors. If \mathbf{w} is in $\operatorname{Span}\{S\}$, then \mathbf{w} \qquad be in S.
(d) Let A be a non-zero, non-invertible 3×3 matrix. If the column space of A does not form a line, then the null space of A \qquad form a line.
21. (4 points) Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n}. The following is given:

- $\|\mathbf{u}\|=3$
- \mathbf{v} is a unit vector
- $\mathbf{u}+2 \mathbf{v}$ is orthogonal to $\mathbf{u}+3 \mathbf{v}$

Find:
(a) $\mathbf{u} \cdot \mathbf{v}$
(b) $\|\mathbf{u}+\mathbf{v}\|$
22. (2 points) Prove the following statement.
"If $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent and $\mathbf{w} \notin \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent."

ANSWERS

1. (a) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}3 \\ 4 \\ 0 \\ 5\end{array}\right]+t\left[\begin{array}{r}-3 \\ -1 \\ 1 \\ 0\end{array}\right] \quad$ (b) $\left[\begin{array}{r}9 / 2 \\ 9 / 2 \\ -1 / 2 \\ 5\end{array}\right] \quad$ (c) $\left[\begin{array}{l}2 \\ 2 \\ 5\end{array}\right]=3\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]+\left[\begin{array}{l}-4 \\ -7 \\ -7\end{array}\right]$
(d) FALSE
(e) TRUE
2. $\left[\begin{array}{rrr|r}9 & 3 & 1 & 27 \\ 4 & 2 & 1 & -6 \\ 4 & 1 & 0 & 12\end{array}\right]$
3. (a) $A^{-1}=\left[\begin{array}{rrr}46 & -11 & -10 \\ -32 & 8 & 7 \\ -4 & 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{rrr}23 & -11 / 2 & -5 \\ -16 & 4 & 7 / 2 \\ -2 & 1 / 2 & 1 / 2\end{array}\right]$
4. 150
5. $\frac{1}{2} A^{-1} B-I$
6. (a) $\left[\begin{array}{rr}0 & I \\ A^{-1} & 0\end{array}\right]$
(b) $\left[\begin{array}{rr}A^{2} & 0 \\ 0 & A^{2}\end{array}\right]$
(c) $m=10$
7. (a) $\left\{\left[\begin{array}{r}3 \\ -2 \\ -1\end{array}\right],\left[\begin{array}{r}3 \\ -2 \\ 2\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 3\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-4 \\ 0 \\ -3 \\ 1\end{array}\right]\right\}$
(d) 1
(e) a plane
8. (a) There are more columns than rows in A, so the RREF must contain at least one free variable.
(b) $n \times n \quad$ (c) $\left(A^{T} A\right) \mathbf{x}=\mathbf{0}$ has non-trivial solutions since it is equivalent to $A^{T}(A \mathbf{x})=\mathbf{0}$
9. (a) $c= \pm 1 \quad$ (b) H is neither closed under scalar multiplication, nor under addition (many counterexamples possible) 10. $\left\{x^{3}-7 x, x^{2}-3 x, 1\right\}$ (other answers possible)
10. (a) L.D.
(b) L.I.
(c) L.I.
11. (a) 64
(b) $\frac{1}{3}$
(c) 4
(d) 2
(e) 0
(f) 4
12. $\left[\begin{array}{rrr}1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & -21 & 1\end{array}\right]\left[\begin{array}{rrr}3 & 4 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 52\end{array}\right]$
13. (a) $(3,-1,4)$
(b) $\frac{1}{6}$
(c) No.
14. $(-11,9,5)$
15. $\frac{3 \sqrt{11}}{2}$
16. $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=t\left[\begin{array}{r}2 \\ 1 \\ -3\end{array}\right]$
17. (a) $\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{rr}1 & 0 \\ -7 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}-1 & 0 \\ -7 & 1\end{array}\right]$
18. $k= \pm \frac{5}{2}$
19. (a) CANNOT
(b) MUST, MUST
(c) MIGHT
(d) MUST
20. (a) -3 (b) $2 \quad$ 22. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, then there must exist a nontrivial linear combination $k_{1} \mathbf{u}+k_{2} \mathbf{v}+k_{3} \mathbf{w}=\mathbf{0}$ that must have $k_{3} \neq 0 \Rightarrow \mathbf{w}=\frac{-k_{1}}{k_{3}} \mathbf{u}-\frac{k_{2}}{k_{3}} \mathbf{v}$, which contradicts the fact that $\mathbf{w} \notin \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.
