1. (6 points) Let $R=\left[\begin{array}{rrrrr}1 & 3 & 0 & -2 & -1 \\ 0 & 0 & 1 & -8 & 6 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ be the reduced row echelon form of the matrix $A=\left[\begin{array}{rrrrr}4 & 12 & -2 & 8 & -16 \\ -2 & -6 & 1 & -4 & 8 \\ 5 & 15 & 1 & -18 & 1\end{array}\right]$.
(a) Find two distinct bases for $\operatorname{Col}(A)$.
(b) Find a basis for $\operatorname{Row}(A)$.
(c) Find a basis for $\operatorname{Nul}(A)$.
(d) Find $\operatorname{dim}\left(\operatorname{Nul}\left(A^{T}\right)\right)$.
2. (5 points) Use linear algebra to balance the following chemical equation:

$$
\ldots \mathrm{CO}+\ldots \mathrm{O}_{2} \rightarrow \quad \mathrm{CO}_{2}
$$

3. (5 points) Find all possible combinations of values for h and k that would allow the system of linear equations below to have
(a) infinitely many solutions.
(b) no solution.
(c) a unique solution.

$$
\left\{\begin{aligned}
x+2 z & =1 \\
-x+k y+6 z & =3 h \\
2 y+4 k z & =2
\end{aligned}\right.
$$

4. (5 points) Consider the matrix $A=\left[\begin{array}{rrr}0 & 5 & 10 \\ -1 & 3 & 11\end{array}\right]$.
(a) Find R, the reduced row echelon form of the matrix A.
(b) Express A as a product of elementary matrices multiplied with the matrix R from part (a).
5. (4 points) Give an $L U$-factorization for the matrix $A=\left[\begin{array}{rr}-3 & 1 \\ 6 & 3 \\ -21 & 27\end{array}\right]$.
6. (2 points) Prove that if \mathbf{u} and \mathbf{v} are both solutions to the same matrix equation $A \mathbf{x}=\mathbf{b}$ (where $\mathbf{b} \neq \mathbf{0}$), then the vector $\mathbf{u}+\mathbf{v}$ cannot also be a solution to $A \mathbf{x}=\mathbf{b}$.
7. (10 points) Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$, let B be another 3×3 matrix, and let L be a 3×3 unit lower triangular matrix. If $\operatorname{det}(A)=5$ and $\operatorname{det}(B)=-6$, find the values of the following determinants.
(a) If $C=\left[\begin{array}{ccc}g & h & i \\ 3 a+2 d & 3 b+2 e & 3 c+2 f \\ a & b & c\end{array}\right]$, find $\operatorname{det}(C)$.
(b) If $C=\left[\begin{array}{ccc}g & h & i \\ 3 a+2 d & 3 b+2 e & 3 c+2 f \\ a & b & c\end{array}\right]$, find $\operatorname{det}(A+C)$.
(c) Find det $\left[\begin{array}{cc}I & 0 \\ B^{T} & I+L\end{array}\right]$.
(d) Find $\operatorname{det}(\operatorname{adj}(B))$.
8. (4 points)
(a) Set up a system needed to express the vector $\left[\begin{array}{l}5 \\ 8\end{array}\right]$ as a linear combination of the vectors $\left[\begin{array}{r}3 \\ -4\end{array}\right]$ and $\left[\begin{array}{r}7 \\ -3\end{array}\right]$. Do not row reduce.
(b) Use Cramer's Rule to solve your system from part (a). Give the linear combination described as your final answer.
9. (3 points) Solve for X in the matrix equation $2 X^{T}+A=(X B-C)^{T}$.

Assume that A, B, C are all $n \times n$ matrices and that you will not encounter any non-invertible matrices during your work.
10. (7 points) Let \mathcal{L} be the line $\mathbf{x}=\left[\begin{array}{r}2 \\ k \\ -1\end{array}\right]+t\left[\begin{array}{l}3 \\ 1 \\ k\end{array}\right]$ and let \mathcal{P} be the plane $x+k y-10 z=5$.
(a) For what value(s) of k, if any, does the point $(-4,6,-17)$ lie on the line \mathcal{L} ?
(b) For what value(s) of k, if any, is the line \mathcal{L} parallel to the plane \mathcal{P} ?
(c) For what value(s) of k, if any, is the line \mathcal{L} orthogonal to the plane \mathcal{P} ?
(d) For what value(s) of k, if any, does the plane \mathcal{P} intersect the plane $4 x-12 y-40 z=12$ in a line?
11. (8 points) Consider the points $A(3,5,0), B(5,5,-2)$, and $C(3,8,2)$.
(a) Find the area of a parallelogram with three of its vertices at the points A, B, and C.
(b) Find an equation of the form $a x+b y+c z=d$ for the plane on which the points A, B, and C lie.
(c) Find the distance from the point C to the line through the points A and B.
12. (6 points) Consider the matrix $A=\left[\begin{array}{rrrr}6 & 2 & k & 0 \\ 3 & 1 & -2 & 0 \\ k^{2} & -2 & 3 & k \\ -12 & k & 8 & 0\end{array}\right]$.
(a) Find an expression in terms of k for $\operatorname{det}(A)$.
(b) For what value(s) of k, if any, would $\operatorname{rank}(A)=4$?
13. (4 points) Consider the subspace $\mathcal{H}=\left\{\left[\begin{array}{ll}w & x \\ y & z\end{array}\right] \in \mathbb{M}_{2 \times 2}:\left[\begin{array}{ll}1 & 3\end{array}\right]\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=0\right\}$.
(a) Find a basis for \mathcal{H}.
(b) Give $\operatorname{dim}(\mathcal{H})$.
14. (6 points) Consider the set $\mathcal{R}=\left\{p(x) \in \mathbb{P}_{2}: p(1) p(0)=0\right\}$.
(To be clear: \mathcal{R} is a set of quadratic polynomials for which $p(1)$ multiplied by $p(0)$ equals zero.)
(a) Provide two nonzero polynomials from \mathcal{R}, netiher of which is a scalar multiple of the other.
(b) Is the set \mathcal{R} closed under addition? Justify your answer.
(c) Is the set \mathcal{R} closed under scalar multiplication? Justify your answer.
15. (7 points) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=x\left[\begin{array}{r}-3 \\ 1 \\ 2\end{array}\right]+y\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]+z\left[\begin{array}{r}-2 \\ 2 \\ 0\end{array}\right]$.
(a) Find the standard matrix A of the transformation T.
(b) Give a nonzero vector from the kernel of T.
(c) Is T onto? Justify your answer.
(d) Find a matrix B of rank 1 such that if $S(\mathbf{x})=B \mathbf{x}$ then the standard matrix of $S \circ T$ is a zero matrix.
16. (3 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation defined by $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{ll}1 & x \\ 2 & 1\end{array}\right]\left[\begin{array}{l}y \\ 1\end{array}\right]$. Is the transformation T linear? Justify your answer.
17. (3 points) Let the vector $\mathbf{v} \times \mathbf{w}$ have a magnitude of 4 and form an angle of $\frac{\pi}{3}$ with the unit vector \mathbf{u}. Use the properties of dot product and of cross product to solve for k in the expression below:

$$
\mathbf{u} \cdot(\mathbf{v} \times k \mathbf{w})+3 \mathbf{u} \cdot(\mathbf{w} \times \mathbf{v})=-16
$$

18. (2 points) Consider the standard matrix A of a rotation transformation about the origin in \mathbb{R}^{2}. Use determinants to show that A must be an invertible matrix, regardless of the angle of rotation θ.
19. (5 points) Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be three nonzero vectors in \mathbb{R}^{3} for which $5 \mathbf{u}+8 \mathbf{v}+3 \mathbf{w}=\mathbf{0}$.
(a) Is it possible that $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}=\mathbb{R}^{3}$? Justify your answer briefly.
(b) If we also know that \mathbf{u} is parallel to \mathbf{v}, what is the dimension of $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$?
(c) If A is the matrix $\left[\begin{array}{lll}\mathbf{u} & \mathbf{v} & \mathbf{w}\end{array}\right]$, find a nontrivial solution to $A \mathbf{x}=\mathbf{0}$.
20. (5 points) Complete the following sentences with the word MUST, MIGHT, or CANNOT, as appropriate.
(a) If the first column of a $m \times n$ matrix B is from $\operatorname{Nul}(A)$, then the columns of $A B$ form a linearly dependent set.
(b) The partitioned matrix $\left[\begin{array}{cc}I & A \\ A & I\end{array}\right]$ \qquad
(c) If A is a 4×3 matrix and $A \mathbf{x}=\mathbf{b}$ has no solution, then the dimension of the null space of A
\qquad be zero.
(d) If A, B, and C are three distrinct points in \mathbb{R}^{3} such that $\overrightarrow{A B} \times \overrightarrow{A C}=\mathbf{0}$, then there \qquad exist a single line on which all three points lie.
(e) If $\{\mathbf{u}, \mathbf{v}\}$ is a basis for a subspace S, then the set $\{6 \mathbf{u}+3 \mathbf{v}, 10 \mathbf{u}+5 \mathbf{v}\}$ \qquad also be a basis for S.

ANSWERS:

1. (a) $\left\{\left[\begin{array}{r}4 \\ -2 \\ 5\end{array}\right],\left[\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right]\right\}$ and $\left\{\left[\begin{array}{r}12 \\ -6 \\ 15\end{array}\right],\left[\begin{array}{r}8 \\ -4 \\ -18\end{array}\right]\right\}$ (multiple answers possible)
(b) $\left\{\left[\begin{array}{r}1 \\ 3 \\ 0 \\ -2 \\ -1\end{array}\right],\left[\begin{array}{r}0 \\ 0 \\ 1 \\ -8 \\ 6\end{array}\right]\right\} \quad(c)\left\{\left[\begin{array}{r}-3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 8 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ 0 \\ -6 \\ 0 \\ 1\end{array}\right]\right\}$
(d) 1
2. $2 \mathrm{CO}+1 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$
3. (a) $k=2$ and $h=\frac{1}{3}$, or $k=-2$ and $h=-1$
(b) $k=2$ and $h \neq \frac{1}{3}$, or $k=-2$ and $h \neq-1$
(c) $k \neq \pm 2$ (h can be any real value)
4. (a) $R=\left[\begin{array}{rrr}1 & 0 & -5 \\ 0 & 1 & 2\end{array}\right] \quad$ (b) $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right]\left[\begin{array}{rr}1 & -3 \\ 0 & 1\end{array}\right] R$ (multiple answers possible)
5. $\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 7 & 4 & 1\end{array}\right]\left[\begin{array}{rr}-3 & 1 \\ 0 & 5 \\ 0 & 0\end{array}\right]$
6. $A(\mathbf{u}+\mathbf{v})=2 \mathbf{b} \neq \mathbf{b}$
7. (a) -10
(b) 0
(c) 8
(d) 36
8. (a) $\left[\begin{array}{rr|r}3 & 7 & 5 \\ -4 & -3 & 8\end{array}\right]$
(b) $\left[\begin{array}{l}5 \\ 8\end{array}\right]=\frac{-71}{19}\left[\begin{array}{r}3 \\ -4\end{array}\right]+\frac{44}{19}\left[\begin{array}{r}7 \\ -3\end{array}\right]$
9. $X=\left[\left(2 I-B^{T}\right)^{-1}\left(-A-C^{T}\right)\right]^{T}$ or $X=-\left(A^{T}+C\right)(2 I-B)^{-1}$
10. (a) $k=8$
(b) $k=\frac{1}{3}$
(c) no such k-value exists
(d) $k \neq-3$
11. (a) $2 \sqrt{22}$ units 2
(b) $6 x-4 y+6 z=-2$
(c) $\sqrt{11}$ units
12. (a) $-3 k^{3}-24 k^{2}-48 k$
(b) $k \neq 0,-4$
13. $\left\{\left[\begin{array}{rr}-3 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{rr}-3 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{rr}-9 & 0 \\ 0 & 1\end{array}\right]\right\}$ (multiple answers possible)
(b) 3
14. (a) $3 x^{2}+5 x-8$ and $5 x^{2}-x$ (multiple answers possible)
(b) No.
(c) Yes.
15. (a) $A=\left[\begin{array}{rrr}-3 & -1 & -2 \\ 1 & 0 & 2 \\ 2 & 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{r}-2 \\ 4 \\ 1\end{array}\right]$ (multiple answers possible)
(c) No.
(d) $B=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ (multiple answers possible)
16. No.
17. $k=-5$
18. $\operatorname{det}\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\cos ^{2} \theta+\sin ^{2} \theta=1 \neq 0$
19. (a) No.
(b) 1
(c) $\mathbf{x}=\left[\begin{array}{l}5 \\ 8 \\ 3\end{array}\right]$
20. (a) MUST
(b) MIGHT
(c) MIGHT
(d) MUST
(e) CANNOT
