- 1. (6 points) Let $R = \begin{bmatrix} 1 & 3 & 0 & -2 & -1 \\ 0 & 0 & 1 & -8 & 6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ be the reduced row echelon form of the matrix $A = \begin{bmatrix} 4 & 12 & -2 & 8 & -16 \\ -2 & -6 & 1 & -4 & 8 \\ 5 & 15 & 1 & -18 & 1 \end{bmatrix}.$

 - (a) Find two distinct bases for Col(A).
 - (b) Find a basis for Row(A).
 - (c) Find a basis for Nul(A).
 - (d) Find dim(Nul(A^T)).
- 2. (5 points) Use linear algebra to balance the following chemical equation:

$$CO+ CO+ CO_2 \rightarrow CO_2$$

- **3.** (5 points) Find all possible combinations of values for h and k that would allow the system of linear equations below to have
 - (a) infinitely many solutions.
 - (b) no solution.
 - (c) a unique solution.

$$\begin{cases} x & + 2z = 1 \\ -x + ky + 6z = 3h \\ 2y + 4kz = 2 \end{cases}$$

- **4.** (5 points) Consider the matrix $A = \begin{bmatrix} 0 & 5 & 10 \\ -1 & 3 & 11 \end{bmatrix}$.
 - (a) Find R, the reduced row echelon form of the matrix A.
 - (b) Express A as a product of elementary matrices multiplied with the matrix R from part (a).
- **5.** (4 points) Give an LU-factorization for the matrix $A = \begin{bmatrix} -3 & 1 \\ 6 & 3 \\ 21 & 27 \end{bmatrix}$.
- **6.** (2 points) Prove that if **u** and **v** are both solutions to the same matrix equation $A\mathbf{x} = \mathbf{b}$ (where $\mathbf{b} \neq \mathbf{0}$), then the vector $\mathbf{u} + \mathbf{v}$ cannot also be a solution to $A\mathbf{x} = \mathbf{b}$.
- 7. (10 points) Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$, let B be another 3×3 matrix, and let L be a 3×3 unit lower triangular matrix. If $\det(A) = 5$ and $\det(B) = -6$, find the values of the following determinants.

(a) If
$$C = \begin{bmatrix} g & h & i \\ 3a+2d & 3b+2e & 3c+2f \\ a & b & c \end{bmatrix}$$
, find $\det(C)$.

(b) If
$$C = \begin{bmatrix} g & h & i \\ 3a+2d & 3b+2e & 3c+2f \\ a & b & c \end{bmatrix}$$
, find $\det(A+C)$.

- (c) Find det $\begin{bmatrix} I & 0 \\ B^T & I + L \end{bmatrix}$.
- (d) Find det(adj(B)).
- **8.** (4 points)
 - (a) Set up a system needed to express the vector $\begin{bmatrix} 5 \\ 8 \end{bmatrix}$ as a linear combination of the vectors $\begin{bmatrix} 3 \\ -4 \end{bmatrix}$ and $\begin{bmatrix} 7 \\ -3 \end{bmatrix}$. Do not row reduce.
 - (b) Use Cramer's Rule to solve your system from part (a). Give the linear combination described as your final answer.
- **9.** (3 points) Solve for X in the matrix equation $2X^T + A = (XB C)^T$. Assume that A, B, C are all $n \times n$ matrices and that you will not encounter any non-invertible matrices during your work.
- **10.** (7 points) Let \mathcal{L} be the line $\mathbf{x} = \begin{bmatrix} 2 \\ k \\ -1 \end{bmatrix} + t \begin{bmatrix} 3 \\ 1 \\ k \end{bmatrix}$ and let \mathcal{P} be the plane x + ky 10z = 5.
 - (a) For what value(s) of k, if any, does the point (-4, 6, -17) lie on the line \mathcal{L} ?
 - (b) For what value(s) of k, if any, is the line \mathcal{L} parallel to the plane \mathcal{P} ?
 - (c) For what value(s) of k, if any, is the line \mathcal{L} orthogonal to the plane \mathcal{P} ?
 - (d) For what value(s) of k, if any, does the plane \mathcal{P} intersect the plane 4x 12y 40z = 12 in a line?
- **11.** (8 points) Consider the points A(3,5,0), B(5,5,-2), and C(3,8,2).
 - (a) Find the area of a parallelogram with three of its vertices at the points A, B, and C.
 - (b) Find an equation of the form ax + by + cz = d for the plane on which the points A, B, and C lie.
 - (c) Find the distance from the point C to the line through the points A and B.
- **12.** (6 points) Consider the matrix $A = \begin{bmatrix} 6 & 2 & k & 0 \\ 3 & 1 & -2 & 0 \\ k^2 & -2 & 3 & k \\ -12 & k & 8 & 0 \end{bmatrix}$.
 - (a) Find an expression in terms of k for det(A).
 - (b) For what value(s) of k, if any, would rank(A) = 4?
- **13.** (4 points) Consider the subspace $\mathcal{H} = \left\{ \begin{bmatrix} w & x \\ y & z \end{bmatrix} \in \mathbb{M}_{2 \times 2} : \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} w & x \\ y & z \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 0 \right\}.$
 - (a) Find a basis for \mathcal{H} .
 - (b) Give $\dim(\mathcal{H})$.

14. (6 points) Consider the set $\mathcal{R} = \{p(x) \in \mathbb{P}_2 : p(1)p(0) = 0\}.$

(To be clear: \mathcal{R} is a set of quadratic polynomials for which p(1) multiplied by p(0) equals zero.)

- (a) Provide two nonzero polynomials from \mathcal{R} , netiher of which is a scalar multiple of the other.
- (b) Is the set \mathcal{R} closed under addition? Justify your answer.
- (c) Is the set \mathcal{R} closed under scalar multiplication? Justify your answer.
- **15.** (7 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = x \begin{bmatrix} -3 \\ 1 \\ 2 \end{bmatrix} + y \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + z \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}$.
 - (a) Find the standard matrix A of the transformation T.
 - (b) Give a nonzero vector from the kernel of T.
 - (c) Is T onto? Justify your answer.
 - (d) Find a matrix B of rank 1 such that if $S(\mathbf{x}) = B\mathbf{x}$ then the standard matrix of $S \circ T$ is a zero matrix.
- **16.** (3 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation defined by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & x \\ 2 & 1 \end{bmatrix} \begin{bmatrix} y \\ 1 \end{bmatrix}$. Is the transformation T linear? Justify your answer.
- 17. (3 points) Let the vector $\mathbf{v} \times \mathbf{w}$ have a magnitude of 4 and form an angle of $\frac{\pi}{3}$ with the unit vector \mathbf{u} . Use the properties of dot product and of cross product to solve for k in the expression below:

$$\mathbf{u} \cdot (\mathbf{v} \times k\mathbf{w}) + 3\mathbf{u} \cdot (\mathbf{w} \times \mathbf{v}) = -16$$

- 18. (2 points) Consider the standard matrix A of a rotation transformation about the origin in \mathbb{R}^2 . Use determinants to show that A must be an invertible matrix, regardless of the angle of rotation θ .
- **19.** (5 points) Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be three nonzero vectors in \mathbb{R}^3 for which $5\mathbf{u} + 8\mathbf{v} + 3\mathbf{w} = \mathbf{0}$.
 - (a) Is it possible that $Span\{u, v, w\} = \mathbb{R}^3$? Justify your answer briefly.
 - (b) If we also know that \mathbf{u} is parallel to \mathbf{v} , what is the dimension of $\mathrm{Span}\{\mathbf{u},\mathbf{v},\mathbf{w}\}$?
 - (c) If A is the matrix $[\mathbf{u} \ \mathbf{v} \ \mathbf{w}]$, find a nontrivial solution to $A\mathbf{x} = \mathbf{0}$.
- 20. (5 points) Complete the following sentences with the word MUST, MIGHT, or CANNOT, as appropriate.
 - (a) If the first column of a $m \times n$ matrix B is from Nul(A), then the columns of AB ______ form a linearly dependent set.
 - (b) The partitioned matrix $\begin{bmatrix} I & A \\ A & I \end{bmatrix}$ _____ be symmetric.
 - (c) If A is a 4×3 matrix and $A\mathbf{x} = \mathbf{b}$ has no solution, then the dimension of the null space of A be zero.
 - (d) If A, B, and C are three distrinct points in \mathbb{R}^3 such that $\overrightarrow{AB} \times \overrightarrow{AC} = \mathbf{0}$, then there exist a single line on which all three points lie.

(e) If $\{\mathbf{u}, \mathbf{v}\}$ is a basis for a subspace S, then the set $\{6\mathbf{u} + 3\mathbf{v}, 10\mathbf{u} + 5\mathbf{v}\}$ also be a basis for S.

1. (a) $\left\{ \begin{bmatrix} 4 \\ -2 \\ 5 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \right\}$ and $\left\{ \begin{bmatrix} 12 \\ -6 \\ 15 \end{bmatrix}, \begin{bmatrix} 8 \\ -4 \\ -18 \end{bmatrix} \right\}$ (multiple answers possible) (b) $\left\{ \begin{bmatrix} 1\\3\\0\\-2 \end{bmatrix}, \begin{bmatrix} 0\\1\\-8 \end{bmatrix} \right\}$ (c) $\left\{ \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\8\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-6\\0\\1 \end{bmatrix} \right\}$

- $2. \ 2\dot{CO} + 1O_2 \rightarrow 2\dot{CO}_2$
- 3. (a) k = 2 and $h = \frac{1}{3}$, or k = -2 and h = -1 (b) k = 2 and $h \neq \frac{1}{3}$, or k = -2 and $h \neq -1$ (c) $k \neq \pm 2$ (h can be any real value)
- 4. (a) $R = \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 2 \end{bmatrix}$ (b) $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} R$ (multiple answers possible)

5.
$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 7 & 4 & 1 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ 0 & 5 \\ 0 & 0 \end{bmatrix}$$
6.
$$A(\mathbf{u} + \mathbf{v}) = 2\mathbf{b} \neq \mathbf{b}$$

- 7. (a) -10 (b) 0 (c) 8 (d) 36 8. (a) $\begin{bmatrix} 3 & 7 & 5 \\ -4 & -3 & 8 \end{bmatrix}$ (b) $\begin{bmatrix} 5 \\ 8 \end{bmatrix} = \frac{-71}{19} \begin{bmatrix} 3 \\ -4 \end{bmatrix} + \frac{44}{19} \begin{bmatrix} 7 \\ -3 \end{bmatrix}$
- 9. $X = [(2I B^T)^{-1}(-A C^T)]^T$ or $X = -(A^T + C)(2I B)^{-1}$ 10. (a) k = 8 (b) $k = \frac{1}{3}$ (c) no such k-value exists (d) $k \neq -3$ 11. (a) $2\sqrt{22}$ units² (b) 6x 4y + 6z = -2 (c) $\sqrt{11}$ units

- 12. (a) $-3k^3 24k^2 48k$ (b) $k \neq 0, -4$ 13. $\left\{ \begin{bmatrix} -3 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -3 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -9 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ (multiple answers possible) (b) 3
- 14. (a) $3x^2 + 5x 8$ and $5x^2 x$ (multiple answers possible) (b) No. (c) Yes. 15. (a) $A = \begin{bmatrix} -3 & -1 & -2 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} -2 \\ 4 \\ 1 \end{bmatrix}$ (multiple answers possible) (c) No.
- (d) $B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (multiple answers possible)
- 16. No.

17.
$$k = -5$$

$$18. \det \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \cos^2 \theta + \sin^2 \theta = 1 \neq 0$$

19. (a) No. (b) 1 (c)
$$\mathbf{x} = \begin{bmatrix} 5 \\ 8 \\ 3 \end{bmatrix}$$

(c) MIGHT (d) MUST (e) CANNOT 20. (a) MUST (b) MIGHT