1. Given $A=\left[\begin{array}{rrrrrr}3 & 4 & 8 & 0 & 5 & 3 \\ 3 & 2 & -2 & 0 & 2 & 13 \\ 0 & -2 & -10 & 0 & -3 & 10 \\ 6 & 4 & -4 & 0 & 9 & 16\end{array}\right] \sim R=\left[\begin{array}{rrrrrr}1 & 0 & -4 & 0 & 0 & 7 \\ 0 & 1 & 5 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) Write the last column of A as a linear combination of the first five columns of A.
(b) Find a basis for $\operatorname{Col}(A)$.
(c) Find a basis for $\operatorname{Row}(A)$.
(d) Find a basis for $\operatorname{Nul}(A)$.
(e) What is the dimension of $\operatorname{Nul}\left(A^{T}\right)$?
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that first performs the horizontal shear that sends the vector \mathbf{e}_{2} to $-\mathbf{e}_{1}+\mathbf{e}_{2}$ (leaving \mathbf{e}_{1} unchanged), then reflects points through the y-axis, and then rotates points about the origin by $\frac{\pi}{3}$ radians in the clockwise direction. Find the standard matrix for T.
3. Given $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $\operatorname{det}(A)=-3$. Evaluate the following.
(a) $\operatorname{det}\left(\left[\begin{array}{ccc}a / 5 & b / 5 & c / 5 \\ g & h & i \\ a+4 d & b+4 e & c+4 f\end{array}\right]\right)$
(b) $\operatorname{det}\left(2 A^{2} A^{T}\right)$
(c) $\operatorname{det}\left(A^{-1}+\operatorname{adj}(A)\right)$
4. Let $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 6 \\ 4 & 6 & 1\end{array}\right]$.
(a) Perform exactly one elementary row operation on A to get a symmetric matrix. (Call it B)
(Reminder: Matrix B is symmetric if $B=B^{T}$)
(b) Write B as the product, $E A$, where E is an elementary matrix.
5. Given X, B, and C are $n \times n$ matrices, solve the following equation for X. Assume any necessary matrices to be invertible.

$$
\left(3 X^{-1} B\right)^{-1}=C(X+B)
$$

6. Let $A=\left[\begin{array}{rrr}1 & -2 & -4 \\ -2 & 6 & 10 \\ -1 & 2 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right]$.
(a) Determine A^{-1}.
(b) Use your answer in part (a) to solve the matrix equation $A \mathbf{x}=\mathbf{b}$.
7. Determine a specific 3×4 matrix A that meets the following two conditions. Show the conditions are satisfied.

- The dimension of $\operatorname{Nul}(A)$ is equal to the rank of A.
- $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right] \in \operatorname{Nul}(A)$

8. Given $\mathcal{S}=\left\{A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a^{2}=d^{2}\right\}$.
(a) Does \mathcal{S} contain the 2×2 zero matrix?
(b) Is \mathcal{S} closed under vector addition? Justify.
(c) Is \mathcal{S} closed under scalar multiplication? Justify.
9. Given $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $T(\mathbf{u})=\mathbf{u} \cdot \mathbf{u}$. Use specific vectors to show T is not a linear transformation.
10. Find the point on the line $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=t\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right]$ closest to the point $(1,-3,-10)$.
11. Find a non-zero vector which is orthogonal to the plane that contains the points $P(5,2,3), Q(6,0,3)$, and $R(7,5,1)$.
12. Let \mathcal{P}_{1} be the plane with equation $2 x-y+z=3$ and let \mathcal{P}_{2} be the plane with equation $x+y+2 z=1$.
(a) Find a parametric vector equation for the line of intersection of planes \mathcal{P}_{1} and \mathcal{P}_{2}.
(b) For what values a and b does the point (11, a, b) lie on this line of intersection?
(c) Find an equation for the plane \mathcal{P}_{3} that is parallel to \mathcal{P}_{2} and passes through $(1,2,3)$.
(d) Find the distance between \mathcal{P}_{2} and \mathcal{P}_{3}.
13. Let $\mathbf{u}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right], \mathbf{v}=\left[\begin{array}{r}2 \\ -4 \\ 8\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$.
(a) Find the volume of the parallelepiped formed by vectors \mathbf{u}, \mathbf{v}, and \mathbf{w}.
(b) True or false: $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ forms a basis for \mathbb{R}^{3}.
(c) Use your answer in part (a) to find the determinant of the matrix $\left[\begin{array}{rrrr}0 & 0 & 0 & 3 \\ 2 & 2 & 0 & 0 \\ -4 & 1 & 3 & 0 \\ 8 & 3 & 1 & 0\end{array}\right]$.
14. Fill in the blank with the word must, might, or cannot, as appropriate.
(a) A system of linear equations with more equations than variables \qquad have a unique solution.
(b) If $\{\mathbf{u}, \mathbf{v}\}$ and $\{\mathbf{u}, \mathbf{w}\}$ are both linearly independent sets, then $\{\mathbf{v}, \mathbf{w}\}$ \qquad be linearly independent.
(c) If A is a 3×3 matrix such that $A^{3}=I$, then $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ \qquad form a basis for $\operatorname{Col}(A)$.
(d) If $\mathbf{u} \cdot \mathbf{v} \neq 0$, then vectors \mathbf{u} and \mathbf{v} \qquad be parallel.

Answers

1. (a) $\left[\begin{array}{c}3 \\ 13 \\ 10 \\ 16\end{array}\right]=7\left[\begin{array}{l}3 \\ 3 \\ 0 \\ 6\end{array}\right]-2\left[\begin{array}{r}4 \\ 2 \\ -2 \\ 4\end{array}\right]+0\left[\begin{array}{c}8 \\ -2 \\ -10 \\ -4\end{array}\right]+0\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]-2\left[\begin{array}{r}5 \\ 2 \\ -3 \\ 9\end{array}\right] \quad$ (b) $\left\{\left[\begin{array}{l}3 \\ 3 \\ 0 \\ 6\end{array}\right]\left[\begin{array}{r}4 \\ 2 \\ -2 \\ 4\end{array}\right],\left[\begin{array}{r}5 \\ 2 \\ -3 \\ 9\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{llllll}1 & 0 & -4 & 0 & 0 & 7\end{array}\right],\left[\begin{array}{llllll}0 & 1 & 5 & 0 & 0 & -2\end{array}\right],\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & -2\end{array}\right]\right\}$ (other answers exist)
(d) $\left.\left\{\left[\begin{array}{r}4 \\ -5 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-7 \\ 2 \\ 0 \\ 0 \\ 2 \\ 1\end{array}\right]\right\} \quad \begin{array}{l}\text { (e) } 1 \\ \end{array}\right]$
2. $\left[\begin{array}{cc}1 / 2 & \sqrt{3} / 2 \\ -\sqrt{3} / 2 & 1 / 2\end{array}\right]\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}-1 & 1+\sqrt{3} \\ \sqrt{3} & 1-\sqrt{3}\end{array}\right]$
3. (a) $\frac{12}{5}$
(b) -216
(c) $\frac{8}{3}$
4. (a) $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 6 \\ 4 & 6 & 1\end{array}\right] \underset{\sim}{\sim}+2 R_{1}+R_{2}\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 6 \\ 0 & 6 & 1\end{array}\right]=B$
(b) $B=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 6 \\ 4 & 6 & 1\end{array}\right]$
5. $X=3\left(B^{-1}-3 C\right)^{-1} C B$
6. (a) $\quad A^{-1}=\left[\begin{array}{rcr}1 & 1 & -2 \\ 2 & 1 / 2 & 1 \\ -1 & 0 & -1\end{array}\right]$
(b) $\quad \mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{rcr}1 & 1 & -2 \\ 2 & 1 / 2 & 1 \\ -1 & 0 & -1\end{array}\right]\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{r}-2 \\ 8 \\ -5\end{array}\right]$
7. $A=\left[\begin{array}{rrrr}1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ (other answers exist)
8. (a) Yes
(b) δ is not closed under addition
(c) \mathcal{S} is closed under scalar multiplication
9. Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{v}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right], \mathbf{u}+\mathbf{v}=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right] ; \mathrm{T}(\mathbf{u})=1, \mathrm{~T}(\mathbf{v})=4 \rightarrow \mathrm{~T}(\mathbf{u})+\mathrm{T}(\mathbf{v})=5$ however $\mathrm{T}(\mathbf{u}+\mathbf{v})=9$
10. $(3,-6,-6)$
11. $(4,2,7)$
12. (a) $\mathbf{x}=\left[\begin{array}{r}4 / 3 \\ -1 / 3 \\ 0\end{array}\right]+t\left[\begin{array}{r}-1 \\ -1 \\ 1\end{array}\right]$
(b) $\begin{gathered}a=28 / 3 \\ b=-29 / 3\end{gathered}$
(c) $x+y+2 z=9$
(d) $\frac{4}{3} \sqrt{6}$
13. (a) $40 \mathrm{u}^{3}$
(b) True
(c) -120
14. (a) might
(b) might
(c) must
(d) might
