1. Let $A=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 0 & 1 & 4 & -1 \\ 2 & 2 & 2 & 2 \\ 3 & 2 & -1 & 5\end{array}\right]$.
(a) (3 points) Write the solution to $A \mathbf{x}=\mathbf{0}$ in parametric vector form.
(b) (2 points) Find a vector in $\operatorname{Nul}(A)$ that has a 4 in its first entry.
(c) (1 point) Which column of A cannot be written as a linear combination of the other columns of A ?
(d) (1 point) Give a basis for $\operatorname{Col}(A)$.
2. (3 points) Solve for a, b and c in the matrix multiplication below.

$$
\left[\begin{array}{rr}
a & -2 \\
-4 & 2
\end{array}\right]\left[\begin{array}{ll}
b & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
c & -4
\end{array}\right] .
$$

3. (3 points) Given that A and B are invertible with B also being symmetric, solve for matrix X. Your answer should be expressed as a single term.

$$
B^{T} A X-A=(B-I)(B+I) A
$$

4. Given that A, B and C are 2×2 matrices such that $\operatorname{det}(A)=-2, \operatorname{det}(B)=-5$, and $\operatorname{rank}(C)=1$, evaluate the following determinants (or explain why there is not enough information.)
(a) $(2$ points $) \operatorname{det}\left(3 A B^{-1}\right)$
(b) $(2$ points $) \operatorname{det}\left(\operatorname{adj}\left(A^{T}\right)\right)$
(c) $(2$ points $) \operatorname{det}(A C+B C)$
5. (3 points) You are given the following transformations.

Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the shear transformation such that $S\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{r}1 \\ -5\end{array}\right]$.
Let $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the rotation through $\frac{\pi}{2}$ radians. (Note: This is counterclockwise.)
Find the standard matrix of the composite transformation $R \circ S$.
6. Let $A=\left[\begin{array}{llll}2 & 8 & 8 & 8 \\ 2 & 4 & 1 & 1 \\ 0 & 4 & 1 & 1 \\ 0 & 4 & 0 & 1\end{array}\right]$.
(a) (3 points) Find $\operatorname{det}(A)$.
(b) (2 points) Solve the system $A \mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$ for x_{2} only.
7. Let $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 6 \\ 2 & 4 & 6\end{array}\right]$
(a) (3 points) Find A^{-1}.
(b) (2 points) Use your answer in part (a) to solve for the 1×3 matrix X in the following equation: $X A=\left[\begin{array}{lll}1 & 3 & 2\end{array}\right]$
(c) (2 points) Find the elementary matrix E such that $E A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 6 \\ 0 & 0 & 2\end{array}\right]$.
8. Let $H=\left\{A \in \mathbb{M}_{2 \times 2}: A\right.$ is non-invertible $\}$.
(a) (2 points) List two non-zero vectors in H.
(b) (2 points) Is H closed under scalar multiplication? Justify your answer.
(c) (2 points) Is H closed under addition? Justify your answer.
(d) (1 point) Is H a subspace of $\mathbb{M}_{2 \times 2}$? Justify your answer.
9. You are given the following vectors in \mathbb{P}_{3}.
$p(x)=x^{3}+2 x^{2}-1$
$q(x)=2 x^{3}+3 x^{2}-x+2$
$r(x)=-2 x^{3}-x^{2}+3 x-10$
(a) (3 points) Is the set $\{p(x), q(x), r(x)\}$ linearly independent or linearly dependent?
(b) (1 point) What is the dimension of the span of $\{p(x), q(x), r(x)\}$?
(c) (1 point) What is the dimension of \mathbb{P}_{3} ?
10. (4 points) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $T(\mathbf{x})=\mathbf{x} \cdot\left[\begin{array}{r}1 \\ -3 \\ 5\end{array}\right]$. Find a basis for the kernel of T.
11. Complete each of the following sentences with the word "must", "might" or "cannot".
(a) (1 point) If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is a linear transformation, then T \qquad be one-to-one.
(b) (1 point) $A^{T} A$ \qquad be a symmetric matrix.
(c) (1 point) If $B^{2}=B$, then B \qquad be invertible.
(d) (1 point) For a square matrix C, the dimension of $\operatorname{Nul}(C)$ \qquad equal the determinant of C.
12. Let $\mathbf{u}=\left[\begin{array}{r}h \\ -1 \\ 2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}1 \\ 2 \\ -4\end{array}\right]$
(a) (2 points) Find all values of h so that \mathbf{u} is orthogonal to \mathbf{v}.
(b) (2 points) Find all values of h so that \mathbf{u} is parallel to \mathbf{v}.
(c) (2 points) Find all values of h so that $\|\mathbf{u}\|=3$.
(d) (2 points) Let $h=4$ and find the cosine of the angle between \mathbf{u} and \mathbf{v}.
13. You are given the points $A(1,1,1), B(2,4,3)$ and $C(3,2,2)$.
(a) (2 points) Write an equation of the line that contains C and is parallel to the line that goes through A and B.
(b) (3 points) Write a normal equation of the plane that contains A, B and C. (Recall that the normal form is $a x+b y+c z=d$.)
(c) (2 points) Calculate the area of the triangle $A B C$.
14. (4 points) You are given the point $A(-2,3,-8)$ and the line \mathcal{L} given by $\mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+t\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$. Find the point on \mathcal{L} that is closest to A.

Answers

1. (a) $\mathbf{x}=t\left[\begin{array}{r}3 \\ -4 \\ 1 \\ 0\end{array}\right], t \in \mathbb{R} ;(b)\left[\begin{array}{r}4 \\ -\frac{16}{3} \\ \frac{4}{3} \\ 0\end{array}\right] \quad$ (c) The fourth $\quad(\mathrm{d})\left\{\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{r}1 \\ 1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 2 \\ 5\end{array}\right]\right\}$
2. $a=1, b=2, c=-6$
3. $A^{-1} B A$
4. (a) $\frac{18}{5}$, (b) -2 , (c) 0
5. $A_{R \circ S}=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ -5 & 1\end{array}\right]=\left[\begin{array}{rr}5 & -1 \\ 1 & 0\end{array}\right]$
6. (a) 48 , (b) $-\frac{1}{24}$
7. (a) $A^{-1}=\left[\begin{array}{rrr}3 & 2 & -3 \\ 0 & -1 & 1 \\ -1 & 0 & \frac{1}{2}\end{array}\right], \quad$ (b) $\left[\begin{array}{lll}1 & -1 & 1\end{array}\right], \quad$ (c) $E=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$
8. (a) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$ (Answers may vary.), (b) Yes. If $A \in H$, $\operatorname{then} \operatorname{det}(A)=0$. If $k \in \mathbb{R}$, then $\operatorname{det}(k A)=k^{2} \operatorname{det}(A)=k^{2} \cdot 0=0$. Therefore $k A \in H$. (c) No. Using the two vectors from part (a), notice that their sum is $\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$, which is invertible and therefore not in H. (d) No, since H doesn't satisfy closure under addition.
9. (a) Linearly dependent, since $r(x)=4 p(x)-3 q(x)$, (b) 2 , (c) 4
10. $\mathcal{B}=\left\{\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-5 \\ 0 \\ 1\end{array}\right]\right\}$
11. (a) might, (b) must, (c) might, (d) cannot
12. (a) 10 , (b) $-\frac{1}{2}$, (c) $2,-2$, (d) $-\frac{2}{7}$
13. (a) $\mathbf{x}=\left[\begin{array}{l}3 \\ 2 \\ 2\end{array}\right]+t\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$, where $t \in R$ (Answers may vary.)
(b) $x+3 x-5 z=-1$, (c) $\frac{\sqrt{35}}{2}$
14. $(-5,0,-5)$
