1. Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 4 & -1 \\ 2 & 2 & 2 & 2 \\ 3 & 2 & -1 & 5 \end{bmatrix}$$
.

- (a) (3 points) Write the solution to $A\mathbf{x} = \mathbf{0}$ in parametric vector form.
- (b) (2 points) Find a vector in Nul(A) that has a 4 in its first entry.
- (c) (1 point) Which column of A cannot be written as a linear combination of the other columns of A?
- (d) (1 point) Give a basis for Col(A).
- **2.** (3 points) Solve for a,b and c in the matrix multiplication below.

$$\left[\begin{array}{cc} a & -2 \\ -4 & 2 \end{array}\right] \left[\begin{array}{cc} b & 1 \\ 1 & 0 \end{array}\right] = \left[\begin{array}{cc} 0 & 1 \\ c & -4 \end{array}\right].$$

3. (3 points) Given that A and B are invertible with B also being symmetric, solve for matrix X. Your answer should be expressed as a single term.

$$B^T A X - A = (B - I)(B + I)A$$

- **4.** Given that A, B and C are 2×2 matrices such that $\det(A) = -2$, $\det(B) = -5$, and $\operatorname{rank}(C) = 1$, evaluate the following determinants (or explain why there is not enough information.)
 - (a) (2 points) $det(3AB^{-1})$
 - (b) (2 points) $\det(\operatorname{adj}(A^T))$
 - (c) (2 points) det(AC + BC)
- 5. (3 points) You are given the following transformations.

Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the shear transformation such that $S\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$.

Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation through $\frac{\pi}{2}$ radians. (*Note: This is counterclockwise.*)

Find the standard matrix of the composite transformation $R \circ S$.

- **6.** Let $A = \begin{bmatrix} 2 & 8 & 8 & 8 \\ 2 & 4 & 1 & 1 \\ 0 & 4 & 1 & 1 \\ 0 & 4 & 0 & 1 \end{bmatrix}$.
 - (a) (3 points) Find det(A).
 - (b) (2 points) Solve the system $A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ for x_2 only.
- 7. Let $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 6 \\ 2 & 4 & 6 \end{bmatrix}$

- (a) (3 points) Find A^{-1} .
- (b) (2 points) Use your answer in part (a) to solve for the 1×3 matrix X in the following equation: $XA = \begin{bmatrix} 1 & 3 & 2 \end{bmatrix}$
- (c) (2 points) Find the elementary matrix E such that $EA = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 6 \\ 0 & 0 & 2 \end{bmatrix}$.
- **8.** Let $H = \{A \in \mathbb{M}_{2 \times 2} : A \text{ is non-invertible}\}.$
 - (a) (2 points) List two non-zero vectors in H.
 - (b) (2 points) Is H closed under scalar multiplication? Justify your answer.
 - (c) (2 points) Is H closed under addition? Justify your answer.
 - (d) (1 point) Is H a subspace of $\mathbb{M}_{2\times 2}$? Justify your answer.
- **9.** You are given the following vectors in \mathbb{P}_3 .

$$p(x) = x^3 + 2x^2 - 1$$

$$q(x) = 2x^3 + 3x^2 - x + 2$$

$$r(x) = -2x^3 - x^2 + 3x - 10$$

- (a) (3 points) Is the set $\{p(x), q(x), r(x)\}$ linearly independent or linearly dependent?
- (b) (1 point) What is the dimension of the span of $\{p(x), q(x), r(x)\}$?
- (c) (1 point) What is the dimension of \mathbb{P}_3 ?
- **10.** (4 points) Let $T: \mathbb{R}^3 \to \mathbb{R}$ be defined by $T(\mathbf{x}) = \mathbf{x} \cdot \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$. Find a basis for the kernel of T.
- 11. Complete each of the following sentences with the word "must", "might" or "cannot".
 - (a) (1 point) If $T: \mathbb{R}^3 \to \mathbb{R}^4$ is a linear transformation, then T ______ be one-to-one.
 - (b) (1 point) $A^T A$ _____ be a symmetric matrix.
 - (c) (1 point) If $B^2 = B$, then B be invertible.
 - (d) (1 point) For a square matrix C, the dimension of Nul(C) ______ equal the determinant of C.
- **12.** Let $\mathbf{u} = \begin{bmatrix} h \\ -1 \\ 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ -4 \end{bmatrix}$
 - (a) (2 points) Find all values of h so that \mathbf{u} is orthogonal to \mathbf{v} .
 - (b) (2 points) Find all values of h so that \mathbf{u} is parallel to \mathbf{v} .
 - (c) (2 points) Find all values of h so that $||\mathbf{u}|| = 3$.
 - (d) (2 points) Let h = 4 and find the *cosine* of the angle between **u** and **v**.
- **13.** You are given the points A(1,1,1), B(2,4,3) and C(3,2,2).

- (a) (2 points) Write an equation of the line that contains C and is parallel to the line that goes through A and B.
- (b) (3 points) Write a normal equation of the plane that contains A, B and C. (Recall that the normal form is ax + by + cz = d.)
- (c) (2 points) Calculate the area of the triangle ABC.
- **14.** (4 points) You are given the point A(-2,3,-8) and the line \mathcal{L} given by $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + t \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$. Find the point on \mathcal{L} that is closest to A.

Answers

1. (a)
$$\mathbf{x} = t \begin{bmatrix} 3 \\ -4 \\ 1 \\ 0 \end{bmatrix}$$
, $t \in \mathbb{R}$; (b) $\begin{bmatrix} -\frac{4}{16} \\ -\frac{16}{3} \\ \frac{4}{3} \\ 0 \end{bmatrix}$ (c) The fourth (d) $\left\{ \begin{bmatrix} 1 \\ 0 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 2 \\ 5 \end{bmatrix} \right\}$

- 2. a = 1, b = 2, c = -6
- 3. $A^{-1}BA$
- 4. (a) $\frac{18}{5}$, (b) -2, (c) 0
- 5. $A_{R \circ S} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} = \begin{bmatrix} 5 & -1 \\ 1 & 0 \end{bmatrix}$
- 6. (a) 48, (b) $-\frac{1}{24}$
- 7. (a) $A^{-1} = \begin{bmatrix} 3 & 2 & -3 \\ 0 & -1 & 1 \\ -1 & 0 & \frac{1}{2} \end{bmatrix}$, (b) $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$, (c) $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$
- 8. (a) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ (Answers may vary.), (b) Yes. If $A \in H$, then $\det(A) = 0$. If $k \in \mathbb{R}$, then $\det(kA) = k^2 \det(A) = k^2 \cdot 0 = 0$. Therefore $kA \in H$. (c) No. Using the two vectors from part (a), notice that their sum is $\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$, which is invertible and therefore not in H. (d) No, since H doesn't satisfy closure under addition.
- 9. (a) Linearly dependent, since r(x) = 4p(x) 3q(x), (b) 2, (c) 4
- 10. $\mathcal{B} = \left\{ \begin{bmatrix} 3\\1\\0 \end{bmatrix}, \begin{bmatrix} -5\\0\\1 \end{bmatrix} \right\}$
- 11. (a) might, (b) must, (c) might, (d) cannot

12. (a) 10, (b)
$$-\frac{1}{2}$$
, (c) 2, -2, (d) $-\frac{2}{7}$

13. (a)
$$\mathbf{x} = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} + t \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
, where $t \in R$ (Answers may vary.)

(b)
$$x + 3x - 5z = -1$$
, (c) $\frac{\sqrt{35}}{2}$

14.
$$(-5,0,-5)$$