1. Given the following system:

Let $A=\left[\begin{array}{rrrr}1 & 1 & -1 & 8 \\ -4 & -3 & 1 & -26 \\ -5 & -3 & 1 & -30\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}-4 \\ 0 \\ 2\end{array}\right]$
(a) Write the general solution to $A \mathbf{x}=\mathbf{b}$ in parametric vector form.
(b) Find the specific solution where $x_{1}=6$.
(c) Write a basis for $\operatorname{Nul}(A)$
2. Given the following matrix $A=\left[\begin{array}{cccc}1 & 0 & 2 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 0 & b \\ 0 & 3 & a & b\end{array}\right]$
(In your answers, use "and" and "or" correctly.)
(a) Under what conditions on a and b is $\operatorname{rank}(A)=4$?
(b) Under what conditions on a and b is $\operatorname{rank}(A)=3$?
(c) Under what conditions on a and b is $\operatorname{rank}(A)=2$?
3. Let $A=\left[\begin{array}{rrr}3 & -2 & -4 \\ 1 & -1 & -3 \\ 0 & 4 & 21\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}3 \\ 1 \\ 8\end{array}\right]$
(a) Find A^{-1}
(b) Solve $A \mathbf{x}=\mathbf{b}$ using your answer to part (a)
4. Consider the following block matrix, and assume M is invertible, while A, B, C, and D are all square: $M=\left[\begin{array}{rrr}0 & B & 0 \\ A & C & 0 \\ 0 & 0 & D\end{array}\right]$
(a) Find the block matrix form for M^{-1}
(b) Which submatrices A, B, C, and D must be invertible for M^{-1} to exist?
5. Set up an augmented matrix for balancing the following chemical equation:

You do not have to solve the system!

$ـ_{工} \mathrm{Ca}(\mathrm{OH})_{2}+\ldots \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \ldots \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+{ }_{-} \mathrm{H}_{2} \mathrm{O}$
6. Let A be a 4×4 symmetric matrix with $\operatorname{det}(A)=-5$. (Recall that A is symmetric if $A=A^{T}$.)

For each part, either provide an answer or write "not enough information".
(a) What the value of $\operatorname{det}\left(-4 A^{-1}\right)$?
(b) What is the value of $\operatorname{det}\left(2 A^{T}-A\right)$?
(c) What is the value of $\operatorname{det}(A-I)$?
7. Let A, B, and C be $n \times n$ matrices and suppose $A B^{T} C^{-1}=I$
(a) Use determinants to explain why A and B must all be invertible
(b) Does A commute with $B^{T} C^{-1}$? Why or why not?
(c) Find B^{-1}.
8. Let $A=\left[\begin{array}{rr}2 & 5 \\ -2 & -8 \\ 8 & 2\end{array}\right]$.

Write A as the product $L U$, where L is lower triangular and U is upper triangular.
9. Find elementary matrices E_{1} and E_{2} which satisfy the following equation.
$E_{2} E_{1}\left[\begin{array}{rr}-5 & 6 \\ 0 & 1\end{array}\right]=I$
10. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be defined by $T(\mathbf{x})=A \mathbf{x}$, for some matrix A.

Position 1

Position 2
(a) Find the area of each parallelogram.
(b) What are the possible values of $\operatorname{det}(A)$?
(c) Give a specific matrix B such that $S(x)=B x$ will transform the parallelogram in position 2 into the parallelogram in position 1.
(8)

Let T transform the parallelogram in position 1 to the parallelogram in position 2 (as seen below)

12. Find a specific example for each of the following, if possible. If not, explain why.
(a) a nonzero 2×2 matrix A such that $\operatorname{Col}(A)=\operatorname{Row}(A)$.
(b) a 2×2 matrix A such that $\operatorname{Nul}(A)=\operatorname{Row}(A)$.
(c) a lower triangular 3×3 matrix A such that A and $A+I$ are both non-invertible.
(d) a square matrix A such that $T(\mathbf{x})=A \mathbf{x}$ is onto but not 1-1.
(e) A unit vector perpendicular to both $\left[\begin{array}{r}1 \\ -1 \\ -4\end{array}\right]$ and $\left[\begin{array}{r}2 \\ 1 \\ -2\end{array}\right]$.
13. If \mathbf{u}, \mathbf{v} and \mathbf{w} are in \mathbf{R}^{3}, simplify the following expression:

$$
\mathbf{u} \cdot[(\mathbf{v}-\mathbf{u}) \times(\mathbf{w}-\mathbf{u})]
$$

14. Given four points $A(2,7,-1), B(3,3,-1), C(3,7,-4)$ and $D(5,5,5)$,
(a) Find the cosine of the angle between $\overrightarrow{A B}$ and $\overrightarrow{A C}$
(b) Find $\operatorname{proj}_{\overrightarrow{A C}} \overrightarrow{A B}$ and perp $\overrightarrow{A C}$ $\overrightarrow{A B}$
(c) Find the distance from point B to the line through points A and C
(d) Find the equation of the plane, in normal form, containing points A, B and C
(e) Find the volume of the parallelepiped with edges $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D}$.
15. Let \mathcal{P}_{1} be the plane $4 x-2 y+5 z=3$, and let \mathcal{P}_{2} be the plane $-2 x+y+k z=0$.
(Notice that \mathcal{P}_{2} depends on the coefficient k.)
(a) For what value(s) of k are \mathcal{P}_{1} and \mathcal{P}_{2} parallel?
(b) For what value(s) of k are \mathcal{P}_{1} and \mathcal{P}_{2} perpendicular?
(c) For what value(s) of k does $(-1,-1,1)$ lie on the intersection of \mathcal{P}_{1} and \mathcal{P}_{2} ?
(3) 16. Let A and B be matrices of the same size. Suppose that \mathbf{x} is in both $\operatorname{Nul}(A)$ and $\operatorname{Nul}(B)$.

Show that \mathbf{x} must be in $\operatorname{Nul}(A+B)$.
17. Let $A=\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right]$ Let $H=\{X: A X=X A\}$.

It is given that H is a subspace of $M_{2 \times 2}$.
Find a basis for H.
(5) 18. The following two questions are about vector spaces-not necessarily \mathbf{R}^{n}
(a) Write the definition of a "basis of a vector space", using 25 words or fewer. Be precise.
(b) Let V and W be vector spaces.

Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{n}\right\}$ be a basis for V.
Let $T: V \rightarrow W$ be a linear transformation such that $T(\mathbf{x})=0$ for every $\mathbf{x} \in \mathcal{B}$.
Prove that $T(\mathbf{x})=\mathbf{0}$ for every $\mathbf{x} \in V$.

