- (a) Find the value of k which makes this system consistent.
- (b) Using the value of k from part \mathbf{a} , find the general solution to the system of equations and express it in parametric vector form.
- (4) 2. Given $\mathbf{u} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -2 \\ -1 \\ 3 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 1 \\ 13 \\ 16 \end{bmatrix}$, determine whether the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent.
- (4) 3. Use the matrix method to balance the chemical equation $C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$.

(5) 4. Let
$$A = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & k & 4 \\ 3 & -2 & 0 & -2 \\ -2 & 2 & 3 & 4 \end{bmatrix}$$
.

- (a) Find the determinant of A.
- (b) What are the possible value(s) of k such that $det(A) = det(A^{-1})$?
- (3) 5. Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ such that det A = 10.
 - (a) Find the determinant of $\begin{bmatrix} 2a & 2b & 2c \\ 5g & 5h & 5i \\ d & e & f \end{bmatrix}.$
 - (b) Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be the columns of A. Find $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$.
- (4) 6. Show that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T\left(\left[\begin{array}{c} x \\ y \end{array} \right] \right) = \left[\begin{array}{c} x+2y \\ x-|y| \end{array} \right]$ is not a linear transformation.
- (10) 7. Let S be the transformation given by $S(\mathbf{x}) = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \mathbf{x}$, and let T be the transformation given by $T(\mathbf{x}) = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 & 1 \end{bmatrix} \mathbf{x}$.
 - (a) Is S a one-to-one transformation? Justify your answer.
 - (b) Find a vector \mathbf{x} such that $S(\mathbf{x}) = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$
 - (c) What is the range of T? Justify your answer.
 - (d) Find a non-zero vector inside the kernel of T.
 - (e) Let $R(\mathbf{x}) = S(T(\mathbf{x}))$. Find the standard matrix of the transformation R.
- (4) 8. Let T be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 which rotates any vector $\frac{3\pi}{4}$ radians counterclockwise about the origin and then reflects it across the line y = x. Find the standard matrix of T.
- (4) 9. Let ABC = I where A, B, and C are all square.
 - (a) Prove that A, B, and C are invertible.
 - (b) Find B^{-1} .
- (2) 10. Let $X = D^T D + I$. Prove that $X^T = X$.
- (4) 11. Let $A = \begin{bmatrix} 0 & 2 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 0 \end{bmatrix}$. Find A^{-1} .
- (3) 12. The 2×2 matrix A can be row-reduced to I by the following elementary row operations (in order):

- Swap row 1 and row 2.
- Multiply row 2 by $\frac{1}{2}$
- Replace row 1 with the sum of itself and -4 times row 2.
- Multiply row 1 by $\frac{1}{3}$
- (a) Express A as a product of elementary matrices.
- (b) What is $\det A$?
- 13. Find an *LU* factorization of $A = \begin{bmatrix} 2 & -3 & 1 & 2 \\ 4 & -4 & 5 & 3 \\ -6 & 13 & 4 & -6 \end{bmatrix}$. (4)
- 14. Given the following block matrix equation: $\begin{bmatrix} O & A \\ I & B \end{bmatrix} \begin{bmatrix} X & Y \\ Z & O \end{bmatrix} = \begin{bmatrix} I & O \\ O & I \end{bmatrix}.$ (4)Assume A is invertible.
 - (a) Find X, Y, and Z in terms of A, B, and I.
 - (a) Find X, Y, and Z in example 1. (b) Use your answer in part (a) to find the inverse of $M = \begin{bmatrix} 0 & 0 & 5 & 8 \\ 0 & 0 & 2 & 3 \\ 1 & 0 & 1 & -2 \\ 0 & 1 & -3 & 6 \end{bmatrix}$.
- (6) 15. Let **b** be a fixed vector in \mathbb{R}^n and let H be the set of all $m \times n$ matrices A such that $A\mathbf{b} = \mathbf{0}$.

That is, $H = \{A : A \text{ is an } m \times n \text{ matrix and } A\mathbf{b} = \mathbf{0}\}\$

- (a) Prove that H is a subspace of $M_{m \times n}$.
- (b) In particular, let $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Find a basis for the set of all 2×2 matrices such that $A\mathbf{b} = \mathbf{0}$. That is, find a basis for $H = \left\{ A \,:\, A \left[\begin{array}{c} 1 \\ 2 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \right\}$
- 16. Let $S = \left\{ \left| \begin{array}{c} x \\ y \\ z \end{array} \right| : xy = z^2 \right\}.$ (4)

Prove that S has the stated property or use a counterexample to show that the property fails.

- (a) S is closed under vector addition.
- (b) S is closed under multiplication by scalars.
- 17. Let $A = \begin{bmatrix} 1 & 0 & 1 & 2 \\ -1 & 1 & 2 & -3 \\ 1 & 2 & 7 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 & -1 \\ 2 & -4 & -2 \\ 1 & 0 & 3 \end{bmatrix}$. (8)
 - (a) Find a basis for Col A.
 - (b) Find a basis for Nul A.
 - (c) Find a basis for Row B.
 - (d) Prove that $\operatorname{Col} A = \operatorname{Row} B$.
- (4)18. Suppose that A is an $n \times n$ matrix such that Nul $A = \operatorname{Col} A$.
 - (a) Prove that n must be even.
 - (b) Prove that $A^2 = 0$.
- 19. The following picture shows the parallelepiped formed by the vectors $\mathbf{u} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ 5 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} -4 \\ 1 \\ 1 \end{bmatrix}$. (7)

- (a) Find the area of the shaded face.
- (b) Find an equation of the plane containing the shaded face.
- (c) Find the volume of the parallelepiped.
- (d) Find the coordinates of the point labeled A in the diagram.
- (e) Find an equation for the line through the upper back edge shown in the picture.

(5) 20. Let
$$\mathcal{L}_1$$
 be the line $\mathbf{x} = s \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and let \mathcal{L}_2 be the line $\mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.

- (a) Find the distance between the skew lines \mathcal{L}_1 and \mathcal{L}_2 .
- (b) Find the point on \mathcal{L}_2 that is closest to the origin.

(5) 21. Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ a \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} a \\ 1 \end{bmatrix}$.

- (a) Find a unit vector orthogonal to \mathbf{u} .
- (b) Find Proj_vu.
- (c) Find $\|\operatorname{Proj}_{\mathbf{v}}\mathbf{u}\|$.