(4) 1. Use linear algebra to balance the chemical equation:

$$
\mathrm{NH}_{3}+\mathrm{Br}_{2} \longrightarrow \mathrm{NH}_{4} \mathrm{Br}+\mathrm{N}_{2}
$$

2. In this problem you are given the matrix $A=\left[\begin{array}{llllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5} & \mathbf{a}_{6}\end{array}\right]$, with the fourth column unspecified, and its reduced echelon form R :

$$
A=\left[\begin{array}{cccccc}
1 & -7 & 4 & a & 5 & 2 \\
-1 & 7 & 2 & b & 2 & -1 \\
2 & -14 & 3 & c & 3 & 2 \\
3 & -21 & -2 & d & 1 & 6
\end{array}\right] ; \quad R=\left[\begin{array}{cccccc}
1 & -7 & 0 & -3 & 0 & 1 \\
0 & 0 & 1 & 2 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(3) (a) Solve the equation $A \mathbf{x}=\mathbf{0}$.
(b) What is \mathbf{a}_{4} ? (That is, find a, b, c and d.)
(c) Suppose the vector \mathbf{b} is defined by $\mathbf{b}=\mathbf{a}_{2}-2 \mathbf{a}_{4}+3 \mathbf{a}_{6}$. Find the general solution of $A \mathbf{x}=\mathbf{b}$. (Note: No row reduction is necessary.)
(d) What is the dimension of $\operatorname{Nul} A^{T}$?
3. Let $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ -1 & -2 & 3\end{array}\right]$ and $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by $T(\mathbf{x})=A \mathbf{x}$. Let \mathcal{L} be the line defined by $\mathbf{x}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]+t\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$.
(1) (a) What are the domain and codomain of T ?
(b) What is the range of T ? Be as specific as possible!
(c) Find $T(\mathcal{L})$.
(d) More generally, let $\mathbf{x}=\mathbf{p}+t \mathbf{v}$, where $\mathbf{v} \neq \mathbf{0}$ and $\mathbf{p} \in \mathbb{R}^{n}$, be a line in \mathbb{R}^{n}. Let $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Show that S maps this line onto another line or onto a single point (a degenerate line) in \mathbb{R}^{m}.
4. Let $A=\left[\begin{array}{ll}2 & 1 \\ c & d\end{array}\right]$.
(2) (a) Find c and d so that $A^{2}=0$.
(2) (b) Find c and d so that $A^{2}=I$.
(c) Find all c and d so that A^{2} is symmetric.
5. Let $A=\left[\begin{array}{rrr}0 & 1 & 0 \\ 3 & 0 & 0 \\ 15 & 0 & 1\end{array}\right]$.
(4) (a) Find the inverse of A.
(6) 6. Let A and B be invertible $n \times n$ matrices. Let C and D be non-invertible $n \times n$ matrices. Fill in the blanks. The missing word is must, might or cannot.
(a) $A+C \longrightarrow$ be invertible.
(b) $A^{T} A \longrightarrow$ be invertible.
(c) $A C$ and $B C$ \qquad have the same determinant.
(d) $\operatorname{Col} C$ \qquad be equal to $\operatorname{Col} D$.
(e) $\operatorname{Nul} A$ \qquad be equal to $\operatorname{Nul} B$.
(f) The columns of D \qquad be linearly independent.
(4) 7. Let $A=\left[\begin{array}{rrr}3 & -1 & 3 \\ 15 & -3 & 13 \\ 12 & 2 & 10\end{array}\right]$. Find an $L U$ factorization of A.
8. Let A be a 5×5 matrix with $\operatorname{det} A=2$ and let I be the 5×5 identity matrix. Furthermore, assume $A=L U$ where L is unit lower triangular and U is upper triangular. Calculate:
(1) (a) $\operatorname{det} U$
(2) (b) $\operatorname{det}\left(3 A^{-1} A^{T}\right)$
(4) 9. Verify that Cramer's Rule applies to the following system and then use it to solve for x_{2} only.

$$
\begin{aligned}
3 x_{1}-x_{3} & =2 \\
2 x_{2}+5 x_{4} & =0 \\
-4 x_{1}+2 x_{3} & =-1 \\
-5 x_{2}-5 x_{4} & =4
\end{aligned}
$$

(7) 10. Let \mathbb{P}_{2} be the vector space of polynomials of degree at most 2 and $M_{2 \times 2}$ be the vector space of all 2×2 matrices. Determine whether the following sets are subspaces. If a set is a subspace, find a basis for it. If a set is not a subspace, explain why not.
(a) $\mathcal{S}_{1}=\left\{\mathbf{p}(x) \in \mathbb{P}_{2}: \mathbf{p}(0) \geq 0\right\}$
(b) $\mathcal{S}_{2}=\left\{A \in M_{2 \times 2}:\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] A=A\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\}$
11. Let \mathbb{P}_{2} be the vector space of polynomials of degree at most 2 . Define $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ by

$$
T(\mathbf{p})=\left[\begin{array}{l}
\mathbf{p}(1) \\
\mathbf{p}(2)
\end{array}\right]
$$

(2) (a) If $\mathbf{p}(x)=x^{2}-1$, find $T(\mathbf{p})$.
12. Suppose A is a 5×5 matrix of rank 3 . Let $B=\left[\begin{array}{cc}A & A \\ A & A\end{array}\right]$.
(a) What is the rank of B ?
(b) What is the dimension of $\mathrm{Nul} B$?
13. Let \mathcal{L}_{1} be the line in \mathbb{R}^{3} defined by $\mathbf{x}=\left[\begin{array}{c}0 \\ 1 \\ -4\end{array}\right]+s\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$ and let \mathcal{L}_{2} be the line defined by $\mathbf{x}=\left[\begin{array}{l}7 \\ 2 \\ 7\end{array}\right]+t\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$.
(4) (a) Find the point of intersection of \mathcal{L}_{1} and \mathcal{L}_{2}.
(2) (b) Find the cosine of the angle between \mathcal{L}_{1} and \mathcal{L}_{2}.
(4) (c) Find an equation of the form $a x+b y+c z=d$ for the plane containing \mathcal{L}_{1} and \mathcal{L}_{2}.
14. Let \mathcal{P} be the plane $x-2 y+2 z=8$.
(2) (a) Find the distance from the origin to \mathcal{P}.
(3) 15. Suppose \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly independent vectors in \mathbb{R}^{n} such that $\operatorname{Proj}_{\mathbf{w}}(\mathbf{u}+\mathbf{v})=\operatorname{Proj}_{\mathbf{w}} \mathbf{u}$. Show that \mathbf{v} and \mathbf{w} are orthogonal.
(3) 16. (a) Let $\mathbf{u}=\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$. Find two different vectors $\mathbf{w}=\left[\begin{array}{l}k \\ 0 \\ 0\end{array}\right]$ such that the volume of the parallelepiped formed by \mathbf{u}, \mathbf{v}, and \mathbf{w} is 10 .
(2) (b) Suppose the volume of the parallelepiped in \mathbb{R}^{3} formed by three vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is 6 . What is the volume of the parallelepiped formed by $\mathbf{a}, \mathbf{a}+\mathbf{b}$, and $\mathbf{a}+\mathbf{b}+\mathbf{c}$?
(2) 17. (a) Is the following statement True of False? Justify your answer! If $\{\mathbf{a}, \mathbf{b}\}$ and $\{\mathbf{u}, \mathbf{v}\}$ are both linearly dependent sets in \mathbb{R}^{n}, then either $\{\mathbf{a}, \mathbf{u}\}$ or $\{\mathbf{a}, \mathbf{v}\}$ must be linearly dependent.
(b) Suppose that $\{\mathbf{a}, \mathbf{b}\}$ and $\{\mathbf{u}, \mathbf{v}\}$ are both linearly independent sets in \mathbb{R}^{n}. Show that either $\{\mathbf{a}, \mathbf{u}\}$ or $\{\mathbf{a}, \mathbf{v}\}$ must be linearly independent.
18. Let $A=\left[\begin{array}{cc}I & \mathbf{u} \\ \mathbf{u}^{T} & 0\end{array}\right]$, where I is the $n \times n$ identity matrix and \mathbf{u} is a unit vector in \mathbb{R}^{n}. (Note: You will need to use the fact that \mathbf{u} is a unit vector in simplifying the following.)
(a) Find A^{2}.
(b) Find A^{-1}.

Answers

1. $8 \mathrm{NH}_{3}+3 \mathrm{Br}_{2} \longrightarrow 6 \mathrm{NH}_{4} \mathrm{Br}+\mathrm{N}_{2}$
2. (a) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right]=r\left[\begin{array}{l}7 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+s\left[\begin{array}{c}3 \\ 0 \\ -2 \\ 1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0 \\ -1 \\ 1\end{array}\right] \quad$ where $r, s, t \in \mathbb{R}$
(b) $\mathbf{a}_{4}=-3 \mathbf{a}_{1}+2 \mathbf{a}_{3}=\left[\begin{array}{c}5 \\ 7 \\ 0 \\ -13\end{array}\right]$
(c)

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
0 \\
-2 \\
0 \\
3
\end{array}\right]+r\left[\begin{array}{l}
7 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
3 \\
0 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
-1 \\
1
\end{array}\right] \quad \text { where } r, s, t \in \mathbb{R}
$$

(d) $\operatorname{dim}\left(\operatorname{Nul} A^{T}\right)=1$
3. (a) domain $=\mathbb{R}^{3}$ and codomain $=\mathbb{R}^{2}$
(b) range of $T=\operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$
(c) $T(\mathcal{L}): T(\mathbf{x})=\left[\begin{array}{c}2 \\ -2\end{array}\right]$
(d) $S(\mathbf{x})=S(\mathbf{p}+t \mathbf{v})=S(\mathbf{p})+t S(\mathbf{v})$; if $S(\mathbf{v})=\mathbf{0}$ then $S(\mathbf{x})=S(\mathbf{p})$ is a point in \mathbb{R}^{m}; if $S(\mathbf{v}) \neq \mathbf{0}$ then $S(\mathbf{x})$ is a line in \mathbb{R}^{m}.
4. (a) $c=-4$ and $d=-2$
(b) $c=-3$ and $d=-2$
(c) Either $d=-2$ and $c \in \mathbb{R}$, or $c=1$ and $d \in \mathbb{R}$
5. (a) $A^{-1}=\left[\begin{array}{rrr}0 & 1 / 3 & 0 \\ 1 & 0 & 0 \\ 0 & -5 & 1\end{array}\right]$.
(b) Many answers possible, e.g., $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 5 & 0 & 1\end{array}\right]\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
6. (a) might
(b) must
(c) must
(d) might
(e) must
(f) cannot
7. $A=L U=\left[\begin{array}{lll}1 & 0 & 0 \\ 5 & 1 & 0 \\ 4 & 3 & 1\end{array}\right]\left[\begin{array}{rrr}3 & -1 & 3 \\ 0 & 2 & -2 \\ 0 & 0 & 4\end{array}\right]$
8. (a) 2
(b) $3^{5}=243$
(c) $2^{5}=32$
9. $\operatorname{det} A=30 \neq 0$ so Cramer's Rule applies and $x_{2}=-\frac{4}{3}$.
10. (a) \mathcal{S}_{1} is not closed under scalar multiplication; e.g. $p_{1}(x)=1+x^{2} \in \mathcal{S}_{1}$ but $-p_{1}(x)=$ $-1-x^{2} \notin \mathcal{S}_{1}$; so it is not a subspace of \mathbb{P}_{2}.
(b) $\mathcal{S}_{2}=\operatorname{Span}\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]\right\}$ so it is a subspace of $M_{2 \times 2}$;
a basis for \mathcal{S}_{2} is $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]\right\}$
11. (a) $T\left(x^{2}-1\right)=\left[\begin{array}{l}0 \\ 3\end{array}\right]$
(b) A basis for the kernel of T is $\mathcal{B}=\left\{2-3 x+x^{2}\right\}$.
12. (a) $\operatorname{rank} B=3$
(b) $\operatorname{dim}(\mathrm{Nul} B)=7$
13. (a) $(3,4,5)$
(b) $\cos \theta=\frac{4}{\sqrt{66}}=\frac{2 \sqrt{66}}{33}$
(c) $4 x+5 y-3 z=17$
14. (a) distance $=D=\frac{8}{3}$
(b) $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=t\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]$
(c) $\left(\frac{8}{9}, \frac{-16}{9}, \frac{16}{9}\right)$
15. $\left(\frac{(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w}=\left(\frac{\mathbf{u} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w} \longrightarrow\left(\frac{\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}-\frac{\mathbf{u} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w}=\mathbf{0}$

Since $\mathbf{w} \neq 0$, this implies that $\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}=0$ which implies $\mathbf{v} \cdot \mathbf{w}=0$
16. (a) $k= \pm \frac{10}{9} \longrightarrow \mathbf{w}=\left[\begin{array}{c} \pm \frac{10}{9} \\ 0 \\ 0\end{array}\right]$
(b) $|\mathbf{a} \mathbf{a}+\mathbf{b} \mathbf{a}+\mathbf{b}+\mathbf{c}|=|\mathbf{a} \mathbf{b} \mathbf{c}|$ so the required volume is also 6
17. (a) False, e.g., let $\{\mathbf{a}, \mathbf{b}\}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2\end{array}\right]\right\}$ and $\{\mathbf{u}, \mathbf{v}\}=\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ -2\end{array}\right]\right\}$ then both $\{\mathbf{a}, \mathbf{u}\}=$ $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$ and $\{\mathbf{a}, \mathbf{v}\}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2\end{array}\right]\right\}$ are linearly independent.
(b) Note that $\mathbf{a}, \mathbf{b}, \mathbf{u}$ and \mathbf{v} are all nonzero. If $\{\mathbf{a}, \mathbf{u}\}$ is linearly independent then there is nothing to prove. If $\{\mathbf{a}, \mathbf{u}\}$ is linearly dependent then $\mathbf{a}=k \mathbf{u}$ for some $k \neq 0$. Therefore, $\{\mathbf{a}, \mathbf{v}\}=\{k \mathbf{u}, \mathbf{v}\}$ which is linearly independent since $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent.
18. (a) $A^{2}=\left[\begin{array}{cc}I+\mathbf{u u}^{T} & \mathbf{u} \\ \mathbf{u}^{T} & 1\end{array}\right]$
(b) $A^{-1}=\left[\begin{array}{cc}I-\mathbf{u u}^{T} & \mathbf{u} \\ \mathbf{u}^{T} & -1\end{array}\right]$

