(4) 1. Use linear algebra to balance the chemical equation:

$$NH_3 + Br_2 \longrightarrow NH_4Br + N_2$$

2. In this problem you are given the matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4 \ \mathbf{a}_5 \ \mathbf{a}_6]$, with the fourth column unspecified, and **its reduced echelon form** R:

$$A = \begin{bmatrix} 1 & -7 & 4 & a & 5 & 2 \\ -1 & 7 & 2 & b & 2 & -1 \\ 2 & -14 & 3 & c & 3 & 2 \\ 3 & -21 & -2 & d & 1 & 6 \end{bmatrix}; \quad R = \begin{bmatrix} 1 & -7 & 0 & -3 & 0 & 1 \\ 0 & 0 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (3) (a) Solve the equation $A\mathbf{x} = \mathbf{0}$.
- (2) (b) What is \mathbf{a}_4 ? (That is, find a, b, c and d.)
- (2) (c) Suppose the vector **b** is defined by $\mathbf{b} = \mathbf{a}_2 2\mathbf{a}_4 + 3\mathbf{a}_6$. Find the general solution of $A\mathbf{x} = \mathbf{b}$. (Note: No row reduction is necessary.)
- (1) (d) What is the dimension of $\operatorname{Nul} A^T$?
 - 3. Let $A = \begin{bmatrix} 1 & 2 & -3 \\ -1 & -2 & 3 \end{bmatrix}$ and $T : \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $T(\mathbf{x}) = A\mathbf{x}$. Let \mathcal{L} be the line defined by $\mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$.
- (1) (a) What are the domain and codomain of T?
- (2) (b) What is the range of T? Be as specific as possible!
- (2) (c) Find $T(\mathcal{L})$.
- (2) (d) More generally, let $\mathbf{x} = \mathbf{p} + t\mathbf{v}$, where $\mathbf{v} \neq \mathbf{0}$ and $\mathbf{p} \in \mathbb{R}^n$, be a line in \mathbb{R}^n . Let $S : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Show that S maps this line onto another line or onto a single point (a degenerate line) in \mathbb{R}^m .
 - 4. Let $A = \begin{bmatrix} 2 & 1 \\ c & d \end{bmatrix}$.
- (2) (a) Find c and d so that $A^2 = 0$.
- (2) (b) Find c and d so that $A^2 = I$.
- (2) (c) Find all c and d so that A^2 is symmetric.
 - 5. Let $A = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 0 \\ 15 & 0 & 1 \end{bmatrix}$.
- (4) (a) Find the inverse of A.
- (4) (b) Write A as a product of elementary matrices.
- (6) 6. Let A and B be invertible $n \times n$ matrices. Let C and D be non-invertible $n \times n$ matrices. Fill in the blanks. The missing word is **must**, **might** or **cannot**.
 - (a) A + C _____ be invertible.
 - (b) $A^T A$ _____ be invertible.

- (c) AC and BC _____ have the same determinant.
- (d) $\operatorname{Col} C$ be equal to $\operatorname{Col} D$.
- (e) $\operatorname{Nul} A$ _____ be equal to $\operatorname{Nul} B$.
- (f) The columns of D _____ be linearly independent.
- (4) 7. Let $A = \begin{bmatrix} 3 & -1 & 3 \\ 15 & -3 & 13 \\ 12 & 2 & 10 \end{bmatrix}$. Find an LU factorization of A.
 - 8. Let A be a 5×5 matrix with det A = 2 and let I be the 5×5 identity matrix. Furthermore, assume A = LU where L is unit lower triangular and U is upper triangular. Calculate:
- (1) (a) $\det U$
- (2) (b) $\det(3A^{-1}A^T)$
- (2) (c) $\det(L+I)$
- (4) 9. Verify that Cramer's Rule applies to the following system and then use it to solve for x_2 only.

$$3x_1 - x_3 = 2$$

$$2x_2 + 5x_4 = 0$$

$$-4x_1 + 2x_3 = -1$$

$$-5x_2 - 5x_4 = 4$$

- (7) 10. Let \mathbb{P}_2 be the vector space of polynomials of degree at most 2 and $M_{2\times 2}$ be the vector space of all 2×2 matrices. Determine whether the following sets are subspaces. If a set is a subspace, find a basis for it. If a set is not a subspace, explain why not.
 - (a) $S_1 = \{ \mathbf{p}(x) \in \mathbb{P}_2 : \mathbf{p}(0) \ge 0 \}$
 - (b) $S_2 = \left\{ A \in M_{2 \times 2} : \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} A = A \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$
 - 11. Let \mathbb{P}_2 be the vector space of polynomials of degree at most 2. Define $T: \mathbb{P}_2 \to \mathbb{R}^2$ by

$$T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(1) \\ \mathbf{p}(2) \end{bmatrix}.$$

- (2) (a) If $\mathbf{p}(x) = x^2 1$, find $T(\mathbf{p})$.
- (4) (b) Find a basis for the kernel of T.
 - 12. Suppose A is a 5×5 matrix of rank 3. Let $B = \begin{bmatrix} A & A \\ A & A \end{bmatrix}$.
- (1) (a) What is the rank of B?
- (1) (b) What is the dimension of Nul B?
 - 13. Let \mathcal{L}_1 be the line in \mathbb{R}^3 defined by $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ -4 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$ and let \mathcal{L}_2 be the line defined by

$$\mathbf{x} = \begin{bmatrix} 7 \\ 2 \\ 7 \end{bmatrix} + t \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}.$$

- (4) (a) Find the point of intersection of \mathcal{L}_1 and \mathcal{L}_2 .
- (2) (b) Find the cosine of the angle between \mathcal{L}_1 and \mathcal{L}_2 .
- (4) (c) Find an equation of the form ax + by + cz = d for the plane containing \mathcal{L}_1 and \mathcal{L}_2 .
 - 14. Let \mathcal{P} be the plane x 2y + 2z = 8.
- (2) (a) Find the distance from the origin to \mathcal{P} .
- (2) (b) Find an equation for the line through the origin perpendicular to \mathcal{P} .
- (2) (c) Find the point on \mathcal{P} closest to the origin.
- (3) 15. Suppose \mathbf{u} , \mathbf{v} and \mathbf{w} are linearly independent vectors in \mathbb{R}^n such that $\operatorname{Proj}_{\mathbf{w}}(\mathbf{u} + \mathbf{v}) = \operatorname{Proj}_{\mathbf{w}}\mathbf{u}$. Show that \mathbf{v} and \mathbf{w} are orthogonal.
- (3) 16. (a) Let $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$. Find two different vectors $\mathbf{w} = \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix}$ such that the volume of the parallelepiped formed by \mathbf{u} , \mathbf{v} , and \mathbf{w} is 10.
- (2) (b) Suppose the volume of the parallelepiped in \mathbb{R}^3 formed by three vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} is 6. What is the volume of the parallelepiped formed by \mathbf{a} , $\mathbf{a} + \mathbf{b}$, and $\mathbf{a} + \mathbf{b} + \mathbf{c}$?
- (2) 17. (a) Is the following statement True of False? Justify your answer! If $\{\mathbf{a}, \mathbf{b}\}$ and $\{\mathbf{u}, \mathbf{v}\}$ are both linearly **dependent** sets in \mathbb{R}^n , then either $\{\mathbf{a}, \mathbf{u}\}$ or $\{\mathbf{a}, \mathbf{v}\}$ must be linearly **dependent**.
- (2) (b) Suppose that $\{\mathbf{a}, \mathbf{b}\}$ and $\{\mathbf{u}, \mathbf{v}\}$ are both linearly **independent** sets in \mathbb{R}^n . Show that either $\{\mathbf{a}, \mathbf{u}\}$ or $\{\mathbf{a}, \mathbf{v}\}$ must be linearly **independent**.
 - 18. Let $A = \begin{bmatrix} I & \mathbf{u} \\ \mathbf{u}^T & 0 \end{bmatrix}$, where I is the $n \times n$ identity matrix and \mathbf{u} is a unit vector in \mathbb{R}^n . (Note: You will need to use the fact that \mathbf{u} is a unit vector in simplifying the following.)
- (2) (a) Find A^2 .
- (3) (b) Find A^{-1} .

Answers

1. $8NH_3 + 3 Br_2 \longrightarrow 6 NH_4Br + N_2$

(b)
$$\mathbf{a}_4 = -3\mathbf{a}_1 + 2\mathbf{a}_3 = \begin{bmatrix} 5 \\ 7 \\ 0 \\ -13 \end{bmatrix}$$

- (d) $\dim(\operatorname{Nul} A^T) = 1$
- 3. (a) domain= \mathbb{R}^3 and codomain= \mathbb{R}^2
 - (b) range of $T = \operatorname{Col} A = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$
 - (c) $T(\mathcal{L}): T(\mathbf{x}) = \begin{bmatrix} 2\\ -2 \end{bmatrix}$
 - (d) $S(\mathbf{x}) = S(\mathbf{p} + t\mathbf{v}) = S(\mathbf{p}) + tS(\mathbf{v})$; if $S(\mathbf{v}) = \mathbf{0}$ then $S(\mathbf{x}) = S(\mathbf{p})$ is a point in \mathbb{R}^m ; if $S(\mathbf{v}) \neq \mathbf{0}$ then $S(\mathbf{x})$ is a line in \mathbb{R}^m .
- 4. (a) c = -4 and d = -2
 - (b) c = -3 and d = -2
 - (c) Either d = -2 and $c \in \mathbb{R}$, or c = 1 and $d \in \mathbb{R}$
- 5. (a) $A^{-1} = \begin{bmatrix} 0 & 1/3 & 0 \\ 1 & 0 & 0 \\ 0 & -5 & 1 \end{bmatrix}$.
 - (b) Many answers possible, e.g., $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 5 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$
- 6. (a) might
 - (b) must
 - (c) must
 - (d) might
 - (e) must
 - (f) cannot
- 7. $A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 4 & 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & -1 & 3 \\ 0 & 2 & -2 \\ 0 & 0 & 4 \end{bmatrix}$
- 8. (a) 2
 - (b) $3^5 = 243$
 - (c) $2^5 = 32$
- 9. det $A = 30 \neq 0$ so Cramer's Rule applies and $x_2 = -\frac{4}{3}$.
- 10. (a) S_1 is not closed under scalar multiplication; e.g. $p_1(x) = 1 + x^2 \in S_1$ but $-p_1(x) = -1 x^2 \notin S_1$; so it is not a subspace of \mathbb{P}_2 .

- (b) $S_2 = \operatorname{Span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$ so it is a subspace of $M_{2\times 2}$; a basis for S_2 is $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$
- 11. (a) $T(x^2 1) = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$
 - (b) A basis for the kernel of T is $\mathcal{B} = \{2 3x + x^2\}$.
- 12. (a) rank B = 3
 - (b) $\dim(\operatorname{Nul} B) = 7$
- 13. (a) (3,4,5)
 - (b) $\cos \theta = \frac{4}{\sqrt{66}} = \frac{2\sqrt{66}}{33}$
 - (c) 4x + 5y 3z = 17
- 14. (a) distance= $D = \frac{8}{3}$
 - (b) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = t \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$
 - (c) $(\frac{8}{9}, \frac{-16}{9}, \frac{16}{9})$
- 15. $\left(\frac{(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w} = \left(\frac{\mathbf{u} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w} \longrightarrow \left(\frac{\mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \frac{\mathbf{u} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w} = \mathbf{0}$ Since $\mathbf{w} \neq 0$, this implies that $\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} = 0$ which implies $\mathbf{v} \cdot \mathbf{w} = 0$
- 16. (a) $k = \pm \frac{10}{9} \longrightarrow \mathbf{w} = \begin{bmatrix} \pm \frac{10}{9} \\ 0 \\ 0 \end{bmatrix}$
 - (b) $|\mathbf{a} \ \mathbf{a} + \mathbf{b} \ \mathbf{a} + \mathbf{b} + \mathbf{c}| = |\mathbf{a} \ \mathbf{b} \ \mathbf{c}|$ so the required volume is also 6
- 17. (a) False, e.g., let $\{\mathbf{a}, \mathbf{b}\} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\}$ and $\{\mathbf{u}, \mathbf{v}\} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \end{bmatrix} \right\}$ then both $\{\mathbf{a}, \mathbf{u}\} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$ and $\{\mathbf{a}, \mathbf{v}\} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \end{bmatrix} \right\}$ are linearly independent.
 - (b) Note that $\mathbf{a}, \mathbf{b}, \mathbf{u}$ and \mathbf{v} are all nonzero. If $\{\mathbf{a}, \mathbf{u}\}$ is linearly independent then there is nothing to prove. If $\{\mathbf{a}, \mathbf{u}\}$ is linearly dependent then $\mathbf{a} = k\mathbf{u}$ for some $k \neq 0$. Therefore, $\{\mathbf{a}, \mathbf{v}\} = \{k\mathbf{u}, \mathbf{v}\}$ which is linearly independent since $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent.
- 18. (a) $A^2 = \begin{bmatrix} I + \mathbf{u}\mathbf{u}^T & \mathbf{u} \\ \mathbf{u}^T & 1 \end{bmatrix}$
 - (b) $A^{-1} = \begin{bmatrix} I \mathbf{u}\mathbf{u}^T & \mathbf{u} \\ \mathbf{u}^T & -1 \end{bmatrix}$