1. (5 points) Given

$$
x_{1}+2 x_{2}+6 x_{3}+4 x_{4}=5
$$

$$
x_{2}+5 x_{3}+3 x_{4}=7
$$

$$
x_{1}+3 x_{2}+11 x_{3}+7 x_{4}=12
$$

(a) Write the general solution in parametric vector form.
(b) Find a basis for the column space of the coefficient matrix.
2. (8 points) In each part, write a 3×3 matrix A that fits the description or explain why no such matrix exists.
(a) $\operatorname{dim}(\operatorname{Nul}(A))=0$
(b) The columns of A form a linearly dependent set, but the rows of A form a linearly independent set.
(c) The null space of A is a plane.
(d) A has rank 1 , and $I+A$ is non-invertible.
3. (3 points) Set up an augmented matrix for finding the loop currents of the following electrical circuit. You do not have to solve it.

4. (6 points) Let A, B, and C be 4×4 matrices such that $\operatorname{det}(A)=-2, \operatorname{det}(B)=3$, and C is noninvertible. Find the value of each of the following:
(a) $\operatorname{det}\left(-5 A^{2} B^{-1}\right)$
(b) $\operatorname{det}(\operatorname{adj}(B))$
(c) $\operatorname{det}\left((A B C)^{T}\right)$
5. (4 points) Let $A=\left[\begin{array}{lll}2 & 6 & -1 \\ 1 & 2 & -3 \\ 3 & 7 & -6\end{array}\right]$. Find the inverse of A.
6. (4 points) Write an LU Factorization for the matrix $A=\left[\begin{array}{rrr}2 & 5 & 4 \\ 6 & 12 & 6 \\ -4 & -22 & -27\end{array}\right]$
7. (3 points) Use Cramer's rule to solve the following system for x_{2} only.

$$
\left[\begin{array}{rrr}
2 & 3 & 1 \\
1 & -2 & 0 \\
0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right] .
$$

8. (5 points) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear transformation that shifts the first three entries down one spot and brings the negative of the last entry to the top.
For example, $T\left(\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]\right)=\left[\begin{array}{c}-4 \\ 1 \\ 2 \\ 3\end{array}\right]$
(a) Find the standard matrix A of this transformation.
(b) Find A^{87}.
9. (6 points) A non-zero square matrix is said to be nilpotent of degree 2 if $A^{2}=0$.
(a) Provide an example of a 2×2 matrix that is nilpotent of degree 2 .
(b) Show that if A is nilpotent of degree 2 , then so is the block matrix $\left[\begin{array}{cc}A & 0 \\ I & -A\end{array}\right]$.
(c) Suppose A is an $n \times n$ matrix that is nilpotent of degree 2 . Is there any non-zero scalar k such that $A+k I$ is nilpotent of degree 2 ?
10. (10 points) Let $H=\left\{A \in M_{2 \times 2}: A\left[\begin{array}{l}5 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$.
(a) Find a non-zero matrix in H.
(b) Does H contain the zero matrix? Justify.
(c) Is H closed under addition? Justify.
(d) Is H closed under scalar multiplication? Justify.
(e) Is H a subspace of $M_{2 \times 2}$? Justify.
11. (4 points) Find a basis for the vector space $V=\left\{\mathbf{p}(t) \in \mathbb{P}_{3}: \mathbf{p}(-2)=0, \mathbf{p}(2)=0\right\}$.
12. (10 points) Let \mathcal{P} be the plane $x-2 y-3 z=-4$, and let A be the point $(-3,1,-2)$.
(a) Find a parametric vector equation for the line through A and perpendicular to \mathcal{P}.
(b) Find the point on \mathcal{P} closest to A.
(c) Find an equation of the form $a x+b y+c z=d$ of the plane through A and parallel to \mathcal{P}.
(d) What is the distance from A to \mathcal{P} ?
(e) The plane $-4 x+7 y+k z=h$ is perpendicular to \mathcal{P} and goes through A. Find k and h.
13. (6 points) Let $\mathbf{v}=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}3 \\ -2 \\ 1\end{array}\right]$.
(a) Find a unit vector \mathbf{u} perpendicular to both \mathbf{v} and \mathbf{w}.
(b) Find the volume the parallelepiped \mathcal{P} formed by \mathbf{v}, \mathbf{w}, and the vector \mathbf{u} you found in part (a).
(c) Now let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a transformation with standard matrix $A=\left[\begin{array}{ccc}3 & 2 & 9 \\ 0 & -4 & 3 \\ 0 & 0 & 5\end{array}\right]$. Find the volume of $T(\mathcal{P})$, that is, the image of \mathcal{P} under T.
14. (4 points) Find a condition on a, b, c so that $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is in the span of $\left\{\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{r}-3 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{r}14 \\ 6 \\ 4\end{array}\right]\right\}$
15. (4 points) Let A, B, and C be invertible matrices such that $B^{-1} A B+B^{-1} C=I$.
(a) Solve for A in terms of the other matrices.
(b) Prove that B cannot equal C.
16. (6 points) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation associated with a standard transformation matrix A.
(a) If $m>n$, find an expression for the maximum possible value of $\operatorname{dim}(\operatorname{Col}(A))$?
(b) If $m>n$, is it possible for T to be one-to-one? Justify.
(c) If $m=4$ and $n=6$ and the $\operatorname{dim}(\operatorname{Nul}(A))$ of A is 3 , give the dimension of the column space, row space, and null space of A^{T}.
17. (8 points) Complete each of the following sentences with "must", "might", or "cannot".
(a) If $\mathbf{x} \in \operatorname{Nul}(A)$, then $-2 \mathbf{x}$ \qquad also be in $\operatorname{Nul}(A)$.
(b) Let \mathbf{w} be orthogonal to both \mathbf{u} and \mathbf{v}. Then \mathbf{w} \qquad be orthogonal to $\mathbf{u}+\mathbf{v}$.
(c) Let \mathbf{u} be parallel to \mathbf{x}, and let \mathbf{v} be parallel to \mathbf{y}. Then $\mathbf{u}+\mathbf{v}$ \qquad be parallel to $\mathbf{x}+\mathbf{y}$.
(d) If E_{1}, E_{2} are elementary matrices, then $E_{1} E_{2}$ \qquad also be an elementary matrix.
18. (4 points) Let $T: V \rightarrow W$ be a one-to-one linear transformation of vector spaces.

Show that if $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is a linearly dependent set of vectors in W, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ must be a linearly dependent set of vectors in V.

ANSWERS

1. (a) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-9 \\ 7 \\ 0 \\ 0\end{array}\right]+s\left[\begin{array}{c}4 \\ -5 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}2 \\ -3 \\ 0 \\ 1\end{array}\right] \quad$ (b) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]\right\}$
2. (a) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (Answers may vary.)
(b) No such matrix exists.
(c) $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ (Answers may vary.)
(d) $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ (Answers may vary.)
3. $\left[\begin{array}{rrr|r}6 & -4 & 0 & -8 \\ -4 & 8 & -3 & -3 \\ 0 & -3 & 7 & 10\end{array}\right]$
4. (a) $\frac{2500}{3}$
(b) 27
(c) 0
5. $A^{-1}=\left[\begin{array}{rrr}-9 & -29 & 16 \\ 3 & 9 & -5 \\ -1 & -4 & 2\end{array}\right]$
6. $L U=\left[\begin{array}{rrr}1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 4 & 1\end{array}\right]\left[\begin{array}{rrr}2 & 5 & 4 \\ 0 & -3 & -6 \\ 0 & 0 & 5\end{array}\right]$
7. $x_{2}=-\frac{9}{20}$
8. (a) $A=\left[\begin{array}{rrrr}0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] \quad$ (b) $A^{87}=\left[\begin{array}{rrrr}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0\end{array}\right]$
9. (a) $\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$ (Answers may vary.)
(b) $\left[\begin{array}{rr}A & 0 \\ I & -A\end{array}\right]\left[\begin{array}{rr}A & 0 \\ I & -A\end{array}\right]=\left[\begin{array}{rr}A^{2} & 0 \\ 0 & A^{2}\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(c) No
10. (a) $\left[\begin{array}{ll}2 & -5 \\ 2 & -5\end{array}\right]$
(Answers may vary.)
(b) Yes
(c) Yes
(d) Yes
(e) Yes
11. $\mathcal{B}=\left\{t^{2}-4, t^{3}-4 t\right\}$ (Answers may vary.)
12. (a) $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-3 \\ 1 \\ -2\end{array}\right]+t\left[\begin{array}{c}1 \\ -2 \\ -3\end{array}\right]$
(b) $\left(-\frac{47}{14}, \frac{12}{7},-\frac{13}{14}\right)$
(c) $x-2 y-3 z=1$
(d) $\frac{5}{\sqrt{14}}$
(e) $k=-6, h=31$
13. (a) $\mathbf{u}=\frac{1}{\sqrt{26}}\left[\begin{array}{c}3 \\ 4 \\ -1\end{array}\right]$
(b) $\sqrt{26}$
(c) $60 \sqrt{26}$
14. $4 a-10 b+c=0$
15. (a) $A=I-C B^{-1}$
(b) If B were to equal C, then A would equal 0 , which contradicts the assumption that A is invertible.
16. (a) n
(b) Yes
(c) $\operatorname{dim}\left(\operatorname{Col}\left(A^{T}\right)\right)=3, \operatorname{dim}\left(\operatorname{Row}\left(A^{T}\right)\right)=3, \operatorname{dim}\left(\operatorname{Nul}\left(A^{T}\right)\right)=1$
17. (a) must
(b) must
(c) might
(d) might
18. Let $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ be a linearly dependent set of vectors in W. Then there must be real numbers a_{1}, a_{2}, a_{3} not all zero such that $a_{1} T\left(\mathbf{v}_{1}\right)+a_{2} T\left(\mathbf{v}_{2}\right)+a_{3} T\left(\mathbf{v}_{3}\right)=\mathbf{0}_{W}$. Since T is linear, $T\left(a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}\right)=\mathbf{0}_{W}$. Since T is 1-1, the only pre-image of $\mathbf{0}_{W}$ is $\mathbf{0}_{V}$, so $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}=\mathbf{0}_{V}$. This dependence relation on vectors in V tells us that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is also linearly dependent.
