1. You are given matrix $A=\left[\begin{array}{lllll}0 & 0 & 2 & 4 & 0 \\ 2 & 2 & 0 & 6 & 4 \\ 1 & 1 & 2 & 7 & 2\end{array}\right]$ and the reduced row echelon form of A is $\left[\begin{array}{lllll}1 & 1 & 0 & 3 & 2 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a) (3 points) Give the general solution for $A \mathbf{x}=\mathbf{0}$
(b) (1 point) Find the dimension of Nul A.
(c) (1 point) Find a basis for $\operatorname{Col} A$.
(d) (2 points) For what value of a is $\left[\begin{array}{l}6 \\ a \\ 0\end{array}\right]$ in $\operatorname{Col} A$?
(e) (3 points) Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}$ be the columns of A.

For each of the following sets state whether the set is or is not a basis for $\operatorname{Col} A$? Give a brief justification for your answers.
i. $\left\{\mathbf{a}_{2}, \mathbf{a}_{4}\right\}$
ii. $\left\{\mathbf{a}_{2}, \mathbf{a}_{5}\right\}$
iii. $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$
2. Given the following system

$$
\begin{array}{r}
x_{1}+3 x_{2}+x_{3}=0 \\
x_{1}+2 x_{2}+3 x_{3}=3 \\
x_{1}+x_{2}+a x_{3}=6 \\
x_{1}+4 x_{2}-x_{3}=b
\end{array}
$$

(a) (1 point) For what values of a and b is this system inconsistent?
(b) (1 point) For what values of a and b does this system have a unique solution?
(c) (1 point) For what values of a and b does this system have infinitely many solutions?
(d) (2 points) For what values of a and b is $\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ a solution of this system?
3. (4 points) Use row reduction to find a function of the form $y=a_{0}+a_{1} x+a_{2} x^{2}$ that passes through the points

$$
(-1,1),(1,5),(2,1)
$$

4.

(a) (1 point) In \mathbb{R}^{2} find a vector, \mathbf{u}, parallel to the line $y=-2 x$.
(b) (1 point) In \mathbb{R}^{2} find a vector, \mathbf{v}, perpendicular to the line $y=-2 x$.
(c) (2 points) Write the vector $\left[\begin{array}{c}5 \\ 15\end{array}\right]$ as a linear combination of the vectors \mathbf{u} and \mathbf{v} that you found above.
5. Let $A=\left[\begin{array}{ll}3 & a \\ 1 & b\end{array}\right]$.
(a) (2 points) For what values of a and b (if any) is A symmetric?
(b) (2 points) For what values of a and b (if any) is $A^{2}=A$?
(c) (2 points) For what values of a and b (if any) is $A=A^{-1}$?
(d) (2 points) Find a condition on a and b such that A invertible?
6. Let

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

(a) (2 points) Compute A^{2}.
(b) (2 points) Based on the answer in part (a) what is A^{-1} ?
7. Let $S(\mathbf{x})=A \mathbf{x}$ be a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} that reflects vectors through the y-axis, and let $R(\mathbf{x})=B \mathbf{x}$ be a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} that reflects vectors through the line $y=x$.
(a) (3 points) Find the standard matrix of the transformation $T=R \circ S$.
(b) (1 point) Find the angle of rotation corresponding to transformation T.
8. Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is an invertible linear transformation such that

$$
\begin{aligned}
T(\mathbf{a}+\mathbf{b}) & =\mathbf{c} \\
T(\mathbf{a}+\mathbf{c}) & =\mathbf{b} \\
T(\mathbf{b}+\mathbf{c}) & =\mathbf{a}
\end{aligned}
$$

(a) (2 points) What is $T^{-1}(\mathbf{a})$?
(b) (2 points) What is $T(\mathbf{a}+\mathbf{b}+\mathbf{c})$ in simplest form?

Hint: start by adding the three given equations together.
(c) (2 points) What is $T(\mathbf{a})$?
9. (4 points) Write $\left[\begin{array}{cc}1 & 1 \\ 1 & 100\end{array}\right]$ as a product of elementary matrices.
10. (4 points) Suppose A and B are invertible $n \times n$ matrices. Find the inverse of $\left[\begin{array}{cc}A & I \\ B^{-1} A & 0\end{array}\right]$
11. Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 3 & 3 & 3 \\ 1 & 3 & 5 & 5 \\ 1 & 3 & 5 & 7\end{array}\right]$.
(a) (3 points) Evaluate the determinant of A.
(b) (2 points) Use Cramer's Rule to solve for x_{4} only in the system $A \mathbf{x}=\left[\begin{array}{l}0 \\ 0 \\ 2 \\ 0\end{array}\right]$.
12. Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-2 \\ 2\end{array}\right]$.

Let $V=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x} \cdot \mathbf{u}=\mathbf{x} \cdot \mathbf{v}\right\}$
(a) (3 points) Find a basis for V, given that V is a subspace of \mathbb{R}^{2}.
(b) (1 point) Draw the subspace V.
13. Suppose A and B are $n \times n$ matrices and let $V=\left\{X \in M_{n \times n}: A X B=B X A\right\}$
(a) (4 points) Show that V is a subspace of $M_{n \times n}$.
(b) (2 points) If A is invertible and V is defined as above show that A^{-1} will be in V.
14. Let $S=\left\{1+2 x-x^{2}, 1+3 x^{2}, 4 x+a x^{2}\right\}$
(a) (3 points) For what value(s) of a is S linearly dependent?
(b) (1 point) When $a=0$ what is the dimension of the span of S ?
15. Let \mathcal{L}_{1} be the line $\mathbf{x}=\left[\begin{array}{l}5 \\ 1 \\ 3\end{array}\right]+s\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$ and let \mathcal{L}_{2} be the line $\mathbf{x}=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]+s\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$
(a) (3 points) Find the distance between the parallel lines \mathcal{L}_{1} and \mathcal{L}_{2}.
(b) (3 points) Find an equation for the line through the origin that intersects \mathcal{L}_{1} at a right angle.
16. Given $A(1,1,1), B(2,2,2)$, and $C(3,-1,2)$
(a) (3 points) Find an equation of the form $a x+b y+c z=d$ for the plane containing A, B, and C.
(b) (2 points) Find the area of triangle $A B C$.
(c) (2 points) Find the cosine of the angle θ at vertex A of triangle $A B C$.
(d) (2 points) Find the point on side $A C$ that is 2 units from A.
17. Let $\mathbf{w}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ be a vector in \mathbb{R}^{3}.
(a) (2 points) Compute $\mathbf{e}_{1} \times \mathbf{w}, \mathbf{e}_{2} \times \mathbf{w}$, and $\mathbf{e}_{3} \times \mathbf{w}$.
(b) (3 points) Now use the above to evaluate and simplify

$$
\left\|\mathbf{e}_{1} \times \mathbf{w}\right\|^{2}+\left\|\mathbf{e}_{2} \times \mathbf{w}\right\|^{2}+\left\|\mathbf{e}_{3} \times \mathbf{w}\right\|^{2}
$$

Your final answer should be expressed in terms of $\|\mathbf{w}\|$.
18. (8 points) Fill in the correct numerical value for each of of the following statements.
(a) Suppose that A is a 7×4 matrix of rank 3 and that $A \mathbf{x}=\mathbf{b}$ is consistent then the rank of the 7×5 augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$ is \qquad
(b) Suppose that $\left\{\left[\begin{array}{c}3 \\ -2 \\ 7\end{array}\right],\left[\begin{array}{c}-2 \\ a \\ b\end{array}\right]\right\}$ is linearly dependent then $a=$ \ldots and $b=$ \qquad
(c) Suppose $\operatorname{det}(A)=5$ and $\operatorname{det}(2 A)=40$ then $\operatorname{det}(3 A)=$ \qquad
(d) Suppose A is a 6×6 matrix and that Row $A, \operatorname{Col} A$, and $\operatorname{Nul} A$ all have the same dimension then the rank of A is \qquad

ANSWERS

1. (a) $\mathbf{x}=r\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+s\left[\begin{array}{c}-3 \\ 0 \\ -2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-2 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]$ (b) 3 (c) $\left\{\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 2\end{array}\right]\right\}$
(d) $a=-12$ (e) i. Yes
ii. No iii. No
2. (a) $b \neq-3$ (b) $b=-3, a \neq 5$ (c) $b=-3, a=5$ (d) $b=-3, a=5$
3. $y=5+2 x-2 x^{2}$
4. (a) $\left[\begin{array}{c}1 \\ -2\end{array}\right]$ (b) $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ (c) $\left[\begin{array}{c}5 \\ 15\end{array}\right]=-5\left[\begin{array}{c}1 \\ -2\end{array}\right]+5\left[\begin{array}{l}2 \\ 1\end{array}\right]$
5. (a) $a=1, b=$ any value (b) $a=-6, b=-2$ (c) $a=-8, b=-3$ (d) $a \neq 3 b$
6. (a) $4 I$ (b) $\frac{1}{4} A$
7. (a) $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ (b) -90°
8. (a) $\mathbf{b}+\mathbf{c}(\mathrm{b}) \frac{1}{2}(\mathbf{a}+\mathbf{b}+\mathbf{c})\left(\right.$ c) $\frac{1}{2}(-\mathbf{a}+\mathbf{b}+\mathbf{c})$
9. For example, $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & 99\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
10. $\left[\begin{array}{cc}0 & A^{-1} B \\ I & -B\end{array}\right]$
11. (a) 8 (b) $x_{4}=-1$
12. (a) $\left\{\left[\begin{array}{c}1 \\ -3\end{array}\right]\right\} \quad$ 12. (b) Draw a line through the origin in the direction of the basis vector.
13. (a) Yes it is a subspace; all three properties hold.
(b) Substituting $X=A^{-1}$ gives $A X B=A A^{-1} B=B$ and $B X A=B A^{-1} A=B$.
14. (a) $a=-8$ (b) 3
15. (a) $\sqrt{11}$ (b) $\mathbf{x}=t\left[\begin{array}{c}1 \\ -4 \\ 2\end{array}\right]$
16. (a) $3 x+y-4 z=0$ (b) $\frac{\sqrt{26}}{2}$ (c) $\frac{1}{3 \sqrt{3}}$ (d) $\left[\begin{array}{c}7 / 3 \\ -1 / 3 \\ 5 / 3\end{array}\right]$
17. (a) $\mathbf{e}_{1} \times \mathbf{w}=\langle 0,-c, b\rangle, \mathbf{e}_{2} \times \mathbf{w}=\langle c, 0,-\mathrm{a}\rangle, \mathbf{e}_{3} \times \mathbf{w}=\langle-\mathrm{b}, \mathrm{a}, 0\rangle$
18. (b) $2\|\mathbf{w}\|^{2}$
19. (a) 3 (b) $a=4 / 3, b=-14 / 3$ (c) 135 (d) 3
