1. Write the solution to the system $\left\{\begin{aligned} 2 x_{1}-4 x_{2}-2 x_{3}+8 x_{4}= & -4 \\ -3 x_{1}+4 x_{2}-x_{3}-2 x_{4}= & 0 \\ -x_{1}+3 x_{2}+3 x_{3}-9 x_{4}= & 5\end{aligned}\right.$
(5)
2. Given the following matrix $A=\left[\begin{array}{rrrr}3 & 5 & 0 & 4 \\ -1 & 3 & 1 & -2 \\ 0 & k & 0 & 1 \\ 0 & 4 & 0 & k\end{array}\right]$
(a) Find $|A|$ in terms of k.
(b) For what values of k is A non-invertible?
3. Find the inverse of $\left[\begin{array}{rrr}2 & -3 & -14 \\ 1 & -2 & -7 \\ -3 & 5 & 22\end{array}\right]$
4. Given the following matrix $A=\left[\begin{array}{rrr}3 & 2 & 6 \\ 9 & 4 & 22 \\ -12 & -12 & -11\end{array}\right]$
(a) Write A as the product of a lower triangular matrix L and an upper triangular matrix U.
(b) What is $|A|$?
(6) 5. Consider the following block matrix:
$M=\left[\begin{array}{ccc}0 & B & 0 \\ 0 & 0 & A \\ I & 0 & 0\end{array}\right]$
(a) Given that A and B are invertible, find the block matrix form for M^{-1}
(b) Use part (a) to find the inverse of $\left[\begin{array}{rrrrrrr}0 & 0 & 8 & 13 & 0 & 0 & 0 \\ 0 & 0 & 3 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(4) 6. Set up an augmented matrix for finding the loop currents of the following electrical network. You do not have to solve the system.

5. Let A be a 4×4 matrix with $|A|=-3$. Let B be a 4×4 non invertible matrix.
(5)
(7)

For each part, either provide an answer or write "not enough information".
(a) What the value of $|2 A|$?
(b) What is the value of $|A B|$?
(c) What is the value of $|A+B+I|$?
(d) What is the value of $\left|\left(A^{T} A\right)^{-1}\right|$?
8. Let A and B be $n \times n$ matrices and suppose $A B$ is its own inverse. (That is, $(A B)^{-1}=A B$.)
(a) The inverse of $B A B$ is: (choose the correct answer)
(1) $A B A$
(3) $A B$
(5) A
(2) $B A B$
(4) $B A$
(6) B
(b) Is matrix B necessarily invertible? Justify your answer.
(c) Prove that $B A$ is also its own inverse.
(d) Evaluate and simplify $(A B+I)(A B+I)$.
(e) What is $(A B+I)^{8}$?
9. Find both 2×2 matrices A such that the transformation $T(\mathbf{x})=A \mathbf{x}$ transforms the unit square from position 1 to the rectangle in position 2 (as seen below).

Position 1

Position 2

10. Given that
$A=\left[\begin{array}{rrrrrrr}2 & 4 & 20 & 7 & 0 & 20 & 17 \\ 2 & -4 & -4 & -11 & -12 & -12 & -21 \\ 1 & 0 & 4 & -1 & -3 & 2 & -1 \\ -2 & 3 & 1 & 6 & 5 & -3 & 8\end{array}\right] \quad$ row reduces to
$R=\left[\begin{array}{rrrrrrr}1 & 0 & 4 & 0 & -1 & 6 & 2 \\ 0 & 1 & 3 & 0 & -3 & -5 & -2 \\ 0 & 0 & 0 & 1 & 2 & 4 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a) Find a basis for the column space of A
(b) Find a basis for the row space of A
(c) Find a basis for the null space of A
(d) What is $\operatorname{rank}(A)$?
(e) What is $\operatorname{dim}(\operatorname{Nul}(A))$?
(f) What is $\operatorname{rank}\left(A^{T}\right)$?
(g) What is $\operatorname{dim}\left(\operatorname{Nul}\left(A^{T}\right)\right)$?
15. Let \mathcal{P} be the plane containing the points $Q(1,2,3), R(2,3,3)$ and $S(6,4,-2)$.
(a) Find a normal vector to \mathcal{P}.
(b) Find an equation for the plane \mathcal{P} (in standard form $a x+b y+c z=d$).
(c) Find the area of triangle $Q R S$.
(d) Find the volume of the parallelepiped defined by the edges $O Q, O R, O S$, where O is the origin.
11. Let H be the set of all 2×2 matrices such that the sum of all entries is zero.
(a) Provide an example of an invertible matrix in H.
(b) Find a basis for this subspace of $M_{2 \times 2}$
(c) What is the dimension of H ?
12. Let $H=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]:|x|=|y|\right\}$ be a subset of \mathbf{R}^{2}.
(a) Does H satisfy closure under vector addition? Justify.
(b) Does H contain the zero vector of \mathbf{R}^{2} ? Justify.
(c) Does H satisfy closure under scalar multiplication? Justify.
(d) Is H a vector subspace of \mathbf{R}^{2} ? Justify.
(8) 13. Find a specific example for each of the following:
(a) a 2×2 matrix A such that $\operatorname{Col}(A)=\operatorname{Nul}(A)$.
(b) a 3×3 matrix A with every entry different such that $|A|=0$
(c) two orthogonal vectors in \mathbf{R}^{3} that have no zero entries.
(d) A line in \mathbf{R}^{3} which is parallel to the $x y$-plane..
14. Let \mathcal{P}_{1} be the plane $2 x+3 y+3 z=-8$

Let \mathcal{P}_{2} be the plane $x+2 y+2 z=-6$
Let \mathcal{P}_{3} be the plane $x+2 y+2 z=1$
(a) Find the equation of the line of intersection between \mathcal{P}_{1} and \mathcal{P}_{2}.
(b) What is the cosine of the angle between \mathcal{P}_{1} and \mathcal{P}_{2} ?
(c) Find the distance from \mathcal{P}_{2} to \mathcal{P}_{3}.
16. Find the point of intersection between the plane $3 x-2 y+5 z=3$ and the line $\mathbf{x}=\left[\begin{array}{r}-2 \\ -4 \\ 8\end{array}\right]+t\left[\begin{array}{r}2 \\ 2 \\ -3\end{array}\right]$
(5) 17. Let $T: V \rightarrow W$ be a one-to-one linear transformation.
(a) Write the definition of "linearly independent". Be precise.
(b) Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a linearly independent set in V above. Prove that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{k}\right)\right\}$ is also linearly independent.

