(5) 1. Write the solution to the system
$$\begin{cases} 2x_1 - 4x_2 - 2x_3 + 8x_4 = -4 \\ -3x_1 + 4x_2 - x_3 - 2x_4 = 0 \\ -x_1 + 3x_2 + 3x_3 - 9x_4 = 5 \end{cases}$$

(5) 2. Given the following matrix
$$A = \begin{bmatrix} 3 & 5 & 0 & 4 \\ -1 & 3 & 1 & -2 \\ 0 & k & 0 & 1 \\ 0 & 4 & 0 & k \end{bmatrix}$$

- (a) Find |A| in terms of k.
- (b) For what values of k is A non-invertible?

(4) 3. Find the inverse of
$$\begin{bmatrix} 2 & -3 & -14 \\ 1 & -2 & -7 \\ -3 & 5 & 22 \end{bmatrix}$$

(5) 4. Given the following matrix
$$A = \begin{bmatrix} 3 & 2 & 6 \\ 9 & 4 & 22 \\ -12 & -12 & -11 \end{bmatrix}$$

- (a) Write A as the product of a lower triangular matrix L and an upper triangular matrix U.
- (b) What is |A|?
- (6) 5. Consider the following block matrix:

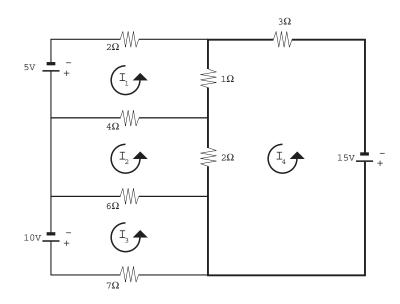
$$M = \left[\begin{array}{ccc} 0 & B & 0 \\ 0 & 0 & A \\ I & 0 & 0 \end{array} \right]$$

(a) Given that A and B are invertible, find the block matrix form for M^{-1}

(b) Use part (a) to find the inverse of
$$\begin{bmatrix} 0 & 0 & 8 & 13 & 0 & 0 & 0 \\ 0 & 0 & 3 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(4) 6. Set up an augmented matrix for finding the loop currents of the following electrical network.

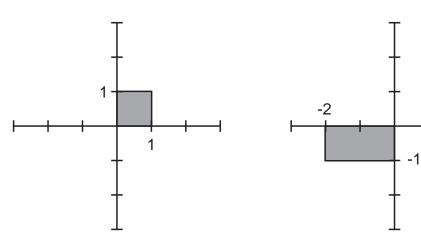
You do not have to solve the system.



- 7. Let A be a 4×4 matrix with |A| = -3. Let B be a 4×4 non invertible matrix.
- (5) For each part, either provide an answer or write "not enough information".
 - (a) What the value of |2A|?
 - (b) What is the value of |AB|?
 - (c) What is the value of |A + B + I|?
 - (d) What is the value of $|(A^TA)^{-1}|$?
- (6) 8. Let A and B be $n \times n$ matrices and suppose AB is its own inverse. (That is, $(AB)^{-1} = AB$.)
 - (a) The inverse of BAB is: (choose the correct answer)
 - (1) ABA
- (3) AB
- (5) A

- (2) BAB
- (4) BA
- (6) B
- (b) Is matrix B necessarily invertible? Justify your answer.
- (c) Prove that BA is also its own inverse.
- (d) Evaluate and simplify (AB + I)(AB + I).
- (e) What is $(AB + I)^8$?
- 9. Find both 2 × 2 matrices A such that the transformation $T(\mathbf{x}) = A\mathbf{x}$ transforms the unit square from position 1 to the rectangle in position 2 (as seen below).

Position 2



(7) 10. Given that

$$A = \begin{bmatrix} 2 & 4 & 20 & 7 & 0 & 20 & 17 \\ 2 & -4 & -4 & -11 & -12 & -12 & -21 \\ 1 & 0 & 4 & -1 & -3 & 2 & -1 \\ -2 & 3 & 1 & 6 & 5 & -3 & 8 \end{bmatrix}$$

row reduces to

$$R = \begin{bmatrix} 1 & 0 & 4 & 0 & -1 & 6 & 2 \\ 0 & 1 & 3 & 0 & -3 & -5 & -2 \\ 0 & 0 & 0 & 1 & 2 & 4 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) Find a basis for the column space of A
- (b) Find a basis for the row space of A
- (c) Find a basis for the null space of A
- (d) What is rank(A)?
- (e) What is $\dim(\text{Nul}(A))$?
- (f) What is $rank(A^T)$?

- (g) What is $\dim(\text{Nul}(A^T))$?
- (5) 11. Let H be the set of all 2×2 matrices such that the sum of all entries is zero.
 - (a) Provide an example of an invertible matrix in H.
 - (b) Find a basis for this subspace of $M_{2\times 2}$
 - (c) What is the dimension of H?
- (8) 12. Let $H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : |x| = |y| \right\}$ be a subset of \mathbf{R}^2 .
 - (a) Does H satisfy closure under vector addition? Justify.
 - (b) Does H contain the zero vector of \mathbb{R}^2 ? Justify.
 - (c) Does H satisfy closure under scalar multiplication? Justify.
 - (d) Is H a vector subspace of \mathbb{R}^2 ? Justify.
- (8) 13. Find a specific example for each of the following:
 - (a) a 2×2 matrix A such that Col(A) = Nul(A).
 - (b) a 3×3 matrix A with every entry different such that |A| = 0
 - (c) two orthogonal vectors in \mathbb{R}^3 that have no zero entries.
 - (d) A line in \mathbb{R}^3 which is parallel to the xy-plane..
- (9) 14. Let \mathcal{P}_1 be the plane 2x + 3y + 3z = -8
 - Let \mathcal{P}_2 be the plane x + 2y + 2z = -6
 - Let \mathcal{P}_3 be the plane x + 2y + 2z = 1
 - (a) Find the equation of the line of intersection between \mathcal{P}_1 and \mathcal{P}_2 .
 - (b) What is the cosine of the angle between \mathcal{P}_1 and \mathcal{P}_2 ?
 - (c) Find the distance from \mathcal{P}_2 to \mathcal{P}_3 .
- (10) 15. Let \mathcal{P} be the plane containing the points Q(1,2,3), R(2,3,3) and S(6,4,-2).
 - (a) Find a normal vector to \mathcal{P} .
 - (b) Find an equation for the plane \mathcal{P} (in standard form ax + by + cz = d).
 - (c) Find the area of triangle QRS.
 - (d) Find the volume of the parallelepiped defined by the edges OQ, OR, OS, where O is the origin.
- (4) 16. Find the point of intersection between the plane 3x 2y + 5z = 3 and the line $\mathbf{x} = \begin{bmatrix} -2 \\ -4 \\ 8 \end{bmatrix} + t \begin{bmatrix} 2 \\ 2 \\ -3 \end{bmatrix}$
- (5) 17. Let $T: V \to W$ be a one-to-one linear transformation.
 - (a) Write the definition of "linearly independent". Be precise.
 - (b) Let $\{v_1, v_2, \ldots, v_k\}$ be a linearly independent set in V above. Prove that $\{T(v_1), T(v_2), \ldots, T(v_k)\}$ is also linearly independent.