Answers to Math NYC-Final Exam (May 2011)

1.
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ 3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -4 \\ 6 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 where $s, t \in \mathbb{R}$

2.
$$A^{-1} = \begin{bmatrix} -6 & -16 & -3 \\ 3 & 7 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$
, $\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

3. (a) When
$$\begin{vmatrix} x & x & 1 \\ x & 2 & x \\ 2 & x & -x \end{vmatrix} = x^2 - 4 = 0$$
 so for $x = \pm 2$

- (c) Never since two vectors can not generate \mathbb{R}^3 .
- (d) x = 2

4. (a) Not possible since A can not have more than two linearly independent columns. (b) $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix}$ among others

(c) Not possible since
$$\det A^2 \neq 0$$
 implies that $\det A \neq 0$ implying that A is invertible as well.
(d) $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ or $A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$ among others

5. (a)
$$A_1 = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$

(b)
$$A_1 A_2 = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix}$$

(c) Let $x = x_1$ and $y = x_2$. The regions are then as follows:

6. (a)
$$k = 6$$

(b)
$$k = \frac{3}{2}$$

(c)
$$\mathfrak{B} = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$$

(d) Yes, $A\mathbf{x} = 0 \to A^2\mathbf{x} = 0$ which implies that Nul $A \subseteq \text{Nul } A^2$. On the other hand, rank A = 0rank $A^2 = 1$ implying that Nul A and Nul A^2 have the same dimension, so Nul $A = \text{Nul } A^2$.

1

7. (a)
$$(BAB^{-1})^2 = BAB^{-1}BAB^{-1} = BA^2B^{-1}$$

(b)
$$(BAB^{-1})^{-1} = BA^{-1}B^{-1}$$

(c) Yes since
$$\det(BAB^{-1}) = \det B \det A \det B^{-1} = \det A \neq 0$$
.

9. (a)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 & 4 \\ 0 & 4 & 2 \\ 0 & 0 & 5 \end{bmatrix}$$

(b)
$$A^T = U^T L^T = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 4 & 0 \\ 4 & 2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 4 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

(c)
$$\det A = \det L \det U = 1(2)(4)(5) = 40$$

(d)
$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

10. (a)
$$U^{-1} = \begin{bmatrix} -A^{-1}B & A^{-1} \\ I & 0 \end{bmatrix}$$

(b)
$$M^{-1} = \begin{bmatrix} 1 & -1 & 7 & 3 & -5 \\ -2 & 1 & -11 & -4 & 7 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

11. (a)
$$\det A = 18$$

(b)
$$x_4 = \frac{\det A_4}{\det A} = \frac{-42}{18} = \frac{-7}{3}$$

(b)
$$x_4 = \frac{\det A_4}{\det A} = \frac{-42}{18} = \frac{-7}{3}$$

(c) $\det(-2A^{-1}) = (-2)^4 \det A^{-1} = \frac{8}{9}$

(d)
$$\det(A^{-1}A^TA) = \det A^{-1} \det A^T \det A = \det A = 18$$

12. (a) Yes;
$$0 = 2(0)$$
 and $0(0) \le 0$.

(b) Yes; if
$$\mathbf{u} \in V$$
 then $\mathbf{u} = \begin{bmatrix} 2d \\ b \\ c \\ d \end{bmatrix}$ with $bc \leq 0$ and $k\mathbf{u} = \begin{bmatrix} 2kd \\ kb \\ kc \\ kd \end{bmatrix}$ with $k^2bc \leq 0$ so $k\mathbf{u} \in V$.

(c) No, e.g.,
$$\mathbf{u} = \begin{bmatrix} 4 \\ 3 \\ -6 \\ 2 \end{bmatrix} \in V$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ -1 \\ 8 \\ 1 \end{bmatrix} \in V$ yet $\mathbf{u} + \mathbf{w} = \begin{bmatrix} 6 \\ 2 \\ 2 \\ 3 \end{bmatrix}$ is not in V .

13.
$$\mathfrak{B} = \{x^2 - x + 1\}$$
 and dim $V = 1$.

14. (a)
$$\cos \theta = \frac{18}{5\sqrt{14}}$$

(b)
$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} -3 \\ -1 \\ 4 \end{bmatrix}$$
, $A = \frac{\sqrt{26}}{2}$

(c)
$$V = 7$$

(d) All a and b satisfying
$$3a + 2b = -2$$

15. (a)
$$(3, 4, -4)$$

(b)
$$D = \frac{13}{\sqrt{3}}$$

(c)
$$d = \frac{\sqrt{5}}{3}$$

16. (a)
$$(-17, -1, 1)$$

(b)
$$x - 4y + 4z = -9$$

$$||\mathbf{x} + \mathbf{y}||^{2} \leq ||\mathbf{x}||^{2}$$
$$(\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y}) \leq \mathbf{x} \cdot \mathbf{x}$$
$$\mathbf{x} \cdot \mathbf{x} + 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y} \leq \mathbf{x} \cdot \mathbf{x}$$
$$2\mathbf{x} \cdot \mathbf{y} \leq -||\mathbf{y}||^{2}$$
$$\mathbf{x} \cdot \mathbf{y} \leq 0$$

$$\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2 = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y}) - (\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y})$$
$$= \mathbf{x} \cdot \mathbf{x} + 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y} - (\mathbf{x} \cdot \mathbf{x} - 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y})$$
$$= 4\mathbf{x} \cdot \mathbf{y}$$

18. (a)
$$\|\mathbf{a}_i\| = \|A\mathbf{e}_i\| = \|\mathbf{e}_i\| = 1$$

(b)
$$\|\mathbf{a}_i + \mathbf{a}_i\|^2 = \|\mathbf{a}_i\|^2 + 2\mathbf{a}_i \cdot \mathbf{a}_i + \|\mathbf{a}_i\|^2 = 2 + 2\mathbf{a}_i \cdot \mathbf{a}_i$$

Also
$$\|\mathbf{a}_i + \mathbf{a}_i\|^2 = \|A(\mathbf{e}_i + \mathbf{e}_i)\|^2 = \|\mathbf{e}_i + \mathbf{e}_i\|^2 = 2$$
 for $i \neq j$

So
$$2 + 2\mathbf{a}_i \cdot \mathbf{a}_j = 2$$
 this implies that $\mathbf{a}_i \cdot \mathbf{a}_j = 0$ for $i \neq j$

$$(c) A^T A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_n^T \end{bmatrix} [\mathbf{a}_1 \ \mathbf{a}_2 \cdots \mathbf{a}_n] = \begin{bmatrix} \mathbf{a}_1^T \mathbf{a}_1 \ \mathbf{a}_1^T \mathbf{a}_2 \ \cdots \ \mathbf{a}_1^T \mathbf{a}_n \\ \mathbf{a}_2^T \mathbf{a}_1 \ \mathbf{a}_2^T \mathbf{a}_2 \ \cdots \ \mathbf{a}_2^T \mathbf{a}_n \\ \vdots \ \vdots \ \cdots \ \vdots \\ \mathbf{a}_n^T \mathbf{a}_1 \ \mathbf{a}_n^T \mathbf{a}_2 \ \cdots \ \mathbf{a}_n^T \mathbf{a}_n \end{bmatrix} = I_n$$

19. (a)
$$k \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$k \begin{bmatrix} 6 & 6 & 6 \\ 6 & 6 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 so $k = \frac{1}{6}$

(b)
$$A(I - XA)\mathbf{y} = A\mathbf{y} - (AXA)\mathbf{y} = A\mathbf{y} - A\mathbf{y} = 0$$

(c)
$$AX\mathbf{b} = AX(A\mathbf{x}) = (AXA)\mathbf{x} = A\mathbf{x} = \mathbf{b}$$