Answers to Math NYC-Final Exam (May 2011)

1. $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+s\left[\begin{array}{c}-2 \\ 3 \\ 1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{c}-4 \\ 6 \\ 0 \\ 1 \\ 0\end{array}\right]$ where $s, t \in \mathbb{R}$
2. $A^{-1}=\left[\begin{array}{rrr}-6 & -16 & -3 \\ 3 & 7 & 1 \\ 1 & 2 & 0\end{array}\right], \mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
3. (a) When $\left|\begin{array}{rrr}x & x & 1 \\ x & 2 & x \\ 2 & x & -x\end{array}\right|=x^{2}-4=0$ so for $x= \pm 2$
(b) $x=2$
(c) Never since two vectors can not generate \mathbb{R}^{3}.
(d) $x=2$
4. (a) Not possible since A can not have more than two linearly independent columns.
(b) $A=\left[\begin{array}{rrr}1 & 1 & 1 \\ -1 & -1 & -1\end{array}\right]$ among others
(c) Not possible since $\operatorname{det} A^{2} \neq 0$ implies that $\operatorname{det} A \neq 0$ implying that A is invertible as well.
(d) $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ or $A=\left[\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right]$ among others
5. (a) $A_{1}=\frac{\sqrt{2}}{2}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$ and $A_{2}=\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]$
(b) $A_{1} A_{2}=\frac{\sqrt{2}}{2}\left[\begin{array}{rr}1 & -1 \\ -1 & -1\end{array}\right]$
(c) Let $x=x_{1}$ and $y=x_{2}$. The regions are then as follows:

6. (a) $k=6$
(b) $k=\frac{3}{2}$
(c) $\mathfrak{B}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$
(d) Yes, $A \mathbf{x}=0 \rightarrow A^{2} \mathbf{x}=0$ which implies that $\operatorname{Nul} A \subseteq \operatorname{Nul} A^{2}$. On the other hand, $\operatorname{rank} A=$ $\operatorname{rank} A^{2}=1$ implying that $\operatorname{Nul} A$ and $\operatorname{Nul} A^{2}$ have the same dimension, so $\operatorname{Nul} A=\operatorname{Nul} A^{2}$.
7. (a) $\left(B A B^{-1}\right)^{2}=B A B^{-1} B A B^{-1}=B A^{2} B^{-1}$
(b) $\left(B A B^{-1}\right)^{-1}=B A^{-1} B^{-1}$
(c) Yes since $\operatorname{det}\left(B A B^{-1}\right)=\operatorname{det} B \operatorname{det} A \operatorname{det} B^{-1}=\operatorname{det} A \neq 0$.
8. (a) cannot
(b) might
(c) must
(d) must
(e) must
(f) might
(g) cannot
9. (a) $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 4 & 1 & 0 \\ 3 & -2 & 1\end{array}\right]\left[\begin{array}{rrr}2 & -3 & 4 \\ 0 & 4 & 2 \\ 0 & 0 & 5\end{array}\right]$
(b) $A^{T}=U^{T} L^{T}=\left[\begin{array}{rrr}2 & 0 & 0 \\ -3 & 4 & 0 \\ 4 & 2 & 5\end{array}\right]\left[\begin{array}{rrr}1 & 4 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right]$
(c) $\operatorname{det} A=\operatorname{det} L \operatorname{det} U=1(2)(4)(5)=40$
(d) $E=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]$
10. (a) $U^{-1}=\left[\begin{array}{cc}-A^{-1} B & A^{-1} \\ I & 0\end{array}\right]$
(b) $M^{-1}=\left[\begin{array}{rrrrr}1 & -1 & 7 & 3 & -5 \\ -2 & 1 & -11 & -4 & 7 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}\right]$
11. (a) $\operatorname{det} A=18$
(b) $x_{4}=\frac{\operatorname{det} A_{4}}{\operatorname{det} A}=\frac{-42}{18}=\frac{-7}{3}$
(c) $\operatorname{det}\left(-2 A^{-1}\right)=(-2)^{4} \operatorname{det} A^{-1}=\frac{8}{9}$
(d) $\operatorname{det}\left(A^{-1} A^{T} A\right)=\operatorname{det} A^{-1} \operatorname{det} A^{T} \operatorname{det} A=\operatorname{det} A=18$
12. (a) Yes; $0=2(0)$ and $0(0) \leq 0$.
(b) Yes; if $\mathbf{u} \in V$ then $\mathbf{u}=\left[\begin{array}{c}2 d \\ b \\ c \\ d\end{array}\right]$ with $b c \leq 0$ and $k \mathbf{u}=\left[\begin{array}{c}2 k d \\ k b \\ k c \\ k d\end{array}\right]$ with $k^{2} b c \leq 0$ so $k \mathbf{u} \in V$.
(c) No, e.g., $\mathbf{u}=\left[\begin{array}{c}4 \\ 3 \\ -6 \\ 2\end{array}\right] \in V$ and $\mathbf{w}=\left[\begin{array}{c}2 \\ -1 \\ 8 \\ 1\end{array}\right] \in V$ yet $\mathbf{u}+\mathbf{w}=\left[\begin{array}{l}6 \\ 2 \\ 2 \\ 3\end{array}\right]$ is not in V.
(d) No, by part (c).
13. $\mathfrak{B}=\left\{x^{2}-x+1\right\}$ and $\operatorname{dim} V=1$.
14. (a) $\cos \theta=\frac{18}{5 \sqrt{14}}$
(b) $\mathbf{u} \times \mathbf{v}=\left[\begin{array}{c}-3 \\ -1 \\ 4\end{array}\right], A=\frac{\sqrt{26}}{2}$
(c) $V=7$
(d) All a and b satisfying $3 a+2 b=-2$
15. (a) $(3,4,-4)$
(b) $D=\frac{13}{\sqrt{3}}$
(c) $d=\frac{\sqrt{5}}{3}$
16. (a) $(-17,-1,1)$
(b) $x-4 y+4 z=-9$
17. (a)

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2} & \leq\|\mathbf{x}\|^{2} \\
(\mathbf{x}+\mathbf{y}) \cdot(\mathbf{x}+\mathbf{y}) & \leq \mathbf{x} \cdot \mathbf{x} \\
\mathbf{x} \cdot \mathbf{x}+2 \mathbf{x} \cdot \mathbf{y}+\mathbf{y} \cdot \mathbf{y} & \leq \mathbf{x} \cdot \mathbf{x} \\
2 \mathbf{x} \cdot \mathbf{y} & \leq-\|\mathbf{y}\|^{2} \\
\mathbf{x} \cdot \mathbf{y} & \leq 0
\end{aligned}
$$

(b)

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2}-\|\mathbf{x}-\mathbf{y}\|^{2} & =(\mathbf{x}+\mathbf{y}) \cdot(\mathbf{x}+\mathbf{y})-(\mathbf{x}-\mathbf{y}) \cdot(\mathbf{x}-\mathbf{y}) \\
& =\mathbf{x} \cdot \mathbf{x}+2 \mathbf{x} \cdot \mathbf{y}+\mathbf{y} \cdot \mathbf{y}-(\mathbf{x} \cdot \mathbf{x}-2 \mathbf{x} \cdot \mathbf{y}+\mathbf{y} \cdot \mathbf{y}) \\
& =4 \mathbf{x} \cdot \mathbf{y}
\end{aligned}
$$

18. (a) $\left\|\mathbf{a}_{i}\right\|=\left\|A \mathbf{e}_{i}\right\|=\left\|\mathbf{e}_{i}\right\|=1$
(b) $\left\|\mathbf{a}_{i}+\mathbf{a}_{j}\right\|^{2}=\left\|\mathbf{a}_{i}\right\|^{2}+2 \mathbf{a}_{i} \cdot \mathbf{a}_{j}+\left\|\mathbf{a}_{j}\right\|^{2}=2+2 \mathbf{a}_{i} \cdot \mathbf{a}_{j}$

Also $\left\|\mathbf{a}_{i}+\mathbf{a}_{j}\right\|^{2}=\left\|A\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right\|^{2}=\left\|\mathbf{e}_{i}+\mathbf{e}_{j}\right\|^{2}=2$ for $i \neq j$
So $2+2 \mathbf{a}_{i} \cdot \mathbf{a}_{j}=2$ this implies that $\mathbf{a}_{i} \cdot \mathbf{a}_{j}=0$ for $i \neq j$
(c) $A^{T} A=\left[\begin{array}{c}\mathbf{a}_{1}^{T} \\ \mathbf{a}_{2}^{T} \\ \vdots \\ \mathbf{a}_{n}^{T}\end{array}\right]\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} \cdots \mathbf{a}_{n}\end{array}\right]=\left[\begin{array}{cccc}\mathbf{a}_{1}^{T} \mathbf{a}_{1} & \mathbf{a}_{1}^{T} \mathbf{a}_{2} & \cdots & \mathbf{a}_{1}^{T} \mathbf{a}_{n} \\ \mathbf{a}_{2}^{T} \mathbf{a}_{1} & \mathbf{a}_{2}^{T} \mathbf{a}_{2} & \cdots & \mathbf{a}_{2}^{T} \mathbf{a}_{n} \\ \vdots & \vdots & \cdots & \vdots \\ \mathbf{a}_{n}^{T} \mathbf{a}_{1} & \mathbf{a}_{n}^{T} \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}^{T} \mathbf{a}_{n}\end{array}\right]=I_{n}$
19. (a) $k\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ $k\left[\begin{array}{lll}6 & 6 & 6 \\ 6 & 6 & 6\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ so $k=\frac{1}{6}$
(b) $A(I-X A) \mathbf{y}=A \mathbf{y}-(A X A) \mathbf{y}=A \mathbf{y}-A \mathbf{y}=0$
(c) $A X \mathbf{b}=A X(A \mathbf{x})=(A X A) \mathbf{x}=A \mathbf{x}=\mathbf{b}$

