(5) 1. Solve the system

$$
\begin{array}{r}
x_{1}+x_{2}-x_{3}-2 x_{4}+x_{5}=1 \\
2 x_{1}+x_{2}+x_{3}+2 x_{4}-x_{5}=2 \\
x_{1}+2 x_{2}-4 x_{3}-8 x_{4}+5 x_{5}=1 \\
x_{2}-3 x_{3}-6 x_{4}+3 x_{5}=0
\end{array}
$$

2. Let $A=\left[\begin{array}{rrr}2 & 6 & -5 \\ -1 & -3 & 3 \\ 1 & 4 & -6\end{array}\right]$
(a) Find A^{-1}.
(b) Use your answer in part (a) to solve $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=\left[\begin{array}{c}8 \\ -4 \\ 5\end{array}\right]$.
(6) 3 . Let $\mathbf{u}_{1}=\left[\begin{array}{l}x \\ x \\ 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}x \\ 2 \\ x\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}1 \\ x \\ -x\end{array}\right]$
(a) For what value(s) of x will $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be linearly dependent?
(b) For what value(s) of x will $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be linearly dependent?
(c) For what value(s) of x is $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ all of \mathbb{R}^{3} ?
(d) For what value(s) of x is $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ a line in \mathbb{R}^{3} ?
(4) 4. For each of the following, find an example or explain why no such matrix is possible.
(a) A 2×3 matrix A so that the transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
(b) A 2×3 matrix A where every entry is either 1 or -1 so that the transformation $\mathbf{x} \mapsto A \mathbf{x}$ is not onto.
(c) A matrix A such that A^{2} is invertible but A is not.
(d) A 2×2 nonzero matrix A such that $A^{2}=0$.
(6) 5. Let $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that rotates points by $\pi / 4$ radians counterclockwise. Let $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that reflects the points across the line $y=-x$.
(a) Give the standard matrices of T_{1} and T_{2}.
(b) Give the standard matrix of $T_{1} \circ T_{2}$.
(c) Let \mathcal{S} denote the unit square in \mathbb{R}^{2}, that is $\mathcal{S}=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]: 0 \leq x_{1} \leq 1\right.$ and $\left.0 \leq x_{2} \leq 1\right\}$ Draw pictures of \mathcal{S} and $\left(T_{1} \circ T_{2}\right)(\mathcal{S})$.
3. Let $A=\left[\begin{array}{ll}1 & -2 \\ 2 & -4\end{array}\right]$
(a) For what value(s) of k is $\left[\begin{array}{l}3 \\ k\end{array}\right]$ in $\operatorname{Col} A$?
(b) For what value(s) of k is $\left[\begin{array}{l}3 \\ k\end{array}\right]$ in $\operatorname{Nul} A$?
(c) Give a basis for $\operatorname{Nul} A^{2}$.
(d) Is $\operatorname{Nul} A=\operatorname{Nul} A^{2}$? Justify your answer.
(3) 7. Suppose A and B are $n \times n$ matrices where A has linearly independent columns and B is invertible.
(a) Simplify $\left(B A B^{-1}\right)^{2}$.
(b) Simplify $\left(B A B^{-1}\right)^{-1}$.
(c) Does $B A B^{-1}$ have linearly independent columns? Justify your answer.
(7) 8. Fill in the blanks. The missing word is must, might or cannot.
(a) If $\mathbf{y} \in \operatorname{Col} A$ then $A \mathbf{x}=\mathbf{y}$ \qquad be inconsistent.
(b) If $\mathbf{y} \in \operatorname{Col} A$ then \mathbf{y} \qquad be in $\operatorname{Nul} A$.
(c) If $\mathbf{y} \in \operatorname{Col} A$ then \mathbf{y} \qquad be in Row A^{T}.
(d) If $\mathbf{x} \in \operatorname{Col} A$ and $\mathbf{y} \in \operatorname{Col} A$ then $\mathbf{x}+\mathbf{y}$ \qquad be in $\operatorname{Col} A$.
(e) Suppose A is a 5×7 matrix then $\operatorname{Row} A$ and $\operatorname{Col} A$ \qquad have the same dimension.
(f) Suppose A is a 5×7 matrix then $\operatorname{Nul} A$ \qquad be 3 dimensional.
(g) Suppose A is a 5×7 matrix of rank 4 , then $\operatorname{Nul} A^{T}$ \qquad be 3 dimensional.
(6) 9. Let $A=\left[\begin{array}{rrr}2 & -3 & 4 \\ 8 & -8 & 18 \\ 6 & -17 & 13\end{array}\right]$
(a) Find lower triangular matrix L and upper triangular matrix U so that $A=L U$.
(b) Do the same for A^{T}. (Hint: No additional computation is required.)
(c) What is $\operatorname{det} A$?
(d) Find an elementary matrix E such that $E A=\left[\begin{array}{rrr}2 & -3 & 4 \\ 8 & -8 & 18 \\ 0 & -8 & 1\end{array}\right]$.
(6) 10. Let U be an $n \times n$ matrix which is partitioned as $U=\left[\begin{array}{cc}0 & I \\ A & B\end{array}\right]$.
(a) Assume A is invertible. Write U^{-1} as a partitioned matrix.
(b) Use part (a) to find the inverse of M where $M=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 7 & 5 & 3 & 2 & 6 \\ 4 & 3 & 2 & 1 & 5\end{array}\right]$
(7) 11. Let $A=\left[\begin{array}{llll}2 & 3 & 3 & 2 \\ 4 & 3 & 5 & 1 \\ 6 & 0 & 0 & 3 \\ 7 & 0 & 0 & 4\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$
(a) Find $\operatorname{det} A$.
(b) Use Cramer's Rule to solve $A \mathbf{x}=\mathbf{b}$ for x_{4} only.
(c) What is $\operatorname{det}\left(-2 A^{-1}\right)$?
(d) What is $\operatorname{det}\left(A^{-1} A^{T} A\right)$?
(7) 12. Let $V=\left\{\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]: a=2 d\right.$ and $\left.b c \leq 0\right\}$.
(a) Is $\mathbf{0}$ in V ?
(b) Is V closed under scalar multiplication? Justify your answer. No credit is given without a justification.
(c) Is V closed under addition? Justify your answer. No credit is given without a justification.
(d) Is V a subspace of \mathbb{R}^{4} ?
(4) 13. Let $V=\left\{p(x) \in \mathbb{P}_{2}: p^{\prime}(1)=p(1)\right.$ and $\left.p^{\prime}(2)=p(2)\right\}$. Given that V is a subspace of \mathbb{P}_{2} find a basis for V and state the dimension of V.
(6) 14. Let $\mathbf{u}=\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}4 \\ 0 \\ 3\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}a \\ -2 \\ b\end{array}\right]$ find the following:
(a) cosine of the angle between \mathbf{u} and \mathbf{v},
(b) the area of the triangle determined by \mathbf{u} and \mathbf{v},
(c) the volume of the parallelepiped determined by \mathbf{u}, \mathbf{v}, and \mathbf{w},
(d) all values of a and b such that \mathbf{x} is orthogonal to \mathbf{u}.
(6) 15. Given the plane $\mathcal{P}: x+y-z=11$ and the line $\mathcal{L}:\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right]$ find the following:
(a) the point of intersection of \mathcal{P} and \mathcal{L},
(b) the distance from the point $Q(2,-1,3)$ to the plane \mathcal{P},
(c) the distance from the point $R(1,0,1)$ to the line \mathcal{L}.
(5) 16. (a) Show that the lines

$$
\mathcal{L}_{1}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right]+s\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right] \quad \mathcal{L}_{2}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-1 \\
7 \\
5
\end{array}\right]+t\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]
$$

intersect in a point and find the point of intersection.
(b) Find a standard equation of the plane containing \mathcal{L}_{1} and \mathcal{L}_{2}.
(4) 17. (a) Show that if $\|x+y\| \leq\|x\|$ then $\mathbf{x} \cdot \mathbf{y} \leq 0$
(b) Prove the identity $\|\mathbf{x}+\mathbf{y}\|^{2}-\|\mathbf{x}-\mathbf{y}\|^{2}=4 \mathbf{x} \cdot \mathbf{y}$
(4) 18. Suppose $A=\left[\mathbf{a}_{1} \mathbf{a}_{2} \cdots \mathbf{a}_{n}\right]$ is an $n \times n$ matrix such that $\|A \mathbf{x}\|=\|\mathbf{x}\|$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
(a) Show that each column of A is a unit vector. (Hint: consider $\mathbf{a}_{i}=A \mathbf{e}_{i}$.)
(b) Show that any two different columns of A, \mathbf{a}_{i} and \mathbf{a}_{j}, are orthogonal. (Hint: Consider the result in part (a) and $\left\|\mathbf{a}_{i}+\mathbf{a}_{j}\right\|^{2}$.)
(c) Show that $A^{T} A=I_{n}$.
(4) 19. A matrix X is called a weak generalized inverse of A if

$$
A X A=A
$$

(a) For what value of k is $\left[\begin{array}{ll}k & k \\ k & k \\ k & k\end{array}\right]$ a weak generalized inverse of $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$?

For parts (b) and (c), suppose that X is a weak generalized inverse of $m \times n$ matrix A (so you know that $A X A=A$ even though A is not necessarily invertible).
(b) Show that if \mathbf{y} is any vector in \mathbb{R}^{n}, then $(I-X A) \mathbf{y}$ is in $\operatorname{Nul} A$.
(c) Show that if the system $A \mathbf{x}=\mathbf{b}$ is consistent then $X \mathbf{b}$ will be a solution to this system.

