(5) 1. Solve the system

$$x_1 + x_2 - x_3 - 2x_4 + x_5 = 1$$

$$2x_1 + x_2 + x_3 + 2x_4 - x_5 = 2$$

$$x_1 + 2x_2 - 4x_3 - 8x_4 + 5x_5 = 1$$

$$x_2 - 3x_3 - 6x_4 + 3x_5 = 0$$

- (5) 2. Let  $A = \begin{bmatrix} 2 & 6 & -5 \\ -1 & -3 & 3 \\ 1 & 4 & -6 \end{bmatrix}$ 
  - (a) Find  $A^{-1}$ .
  - (b) Use your answer in part (a) to solve  $A\mathbf{x} = \mathbf{b}$  where  $\mathbf{b} = \begin{bmatrix} 8 \\ -4 \\ 5 \end{bmatrix}$ .
- (6) 3. Let  $\mathbf{u}_1 = \begin{bmatrix} x \\ x \\ 2 \end{bmatrix}$ ,  $\mathbf{u}_2 = \begin{bmatrix} x \\ 2 \\ x \end{bmatrix}$ ,  $\mathbf{u}_3 = \begin{bmatrix} 1 \\ x \\ -x \end{bmatrix}$ 
  - (a) For what value(s) of x will  $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$  be linearly dependent?
  - (b) For what value(s) of x will  $\{\mathbf{u}_1, \mathbf{u}_2\}$  be linearly dependent?
  - (c) For what value(s) of x is Span  $\{\mathbf{u}_1, \mathbf{u}_2\}$  all of  $\mathbb{R}^3$ ?
  - (d) For what value(s) of x is Span  $\{\mathbf{u}_1, \mathbf{u}_2\}$  a line in  $\mathbb{R}^3$ ?
- (4) 4. For each of the following, find an example or explain why no such matrix is possible.
  - (a) A  $2 \times 3$  matrix A so that the transformation  $\mathbf{x} \mapsto A\mathbf{x}$  is one-to-one.
  - (b) A  $2 \times 3$  matrix A where every entry is either 1 or -1 so that the transformation  $\mathbf{x} \mapsto A\mathbf{x}$  is **not** onto.
  - (c) A matrix A such that  $A^2$  is invertible but A is not.
  - (d) A  $2 \times 2$  nonzero matrix A such that  $A^2 = 0$ .
- (6) 5. Let  $T_1: \mathbb{R}^2 \to \mathbb{R}^2$  be the linear transformation that rotates points by  $\pi/4$  radians counterclockwise. Let  $T_2: \mathbb{R}^2 \to \mathbb{R}^2$  be the linear transformation that reflects the points across the line y = -x.
  - (a) Give the standard matrices of  $T_1$  and  $T_2$ .
  - (b) Give the standard matrix of  $T_1 \circ T_2$ .
  - (c) Let  $\mathcal{S}$  denote the unit square in  $\mathbb{R}^2$ , that is  $\mathcal{S} = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : 0 \le x_1 \le 1 \text{ and } 0 \le x_2 \le 1 \right\}$ Draw pictures of  $\mathcal{S}$  and  $(T_1 \circ T_2)(\mathcal{S})$ .
- (5) 6. Let  $A = \begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix}$ 
  - (a) For what value(s) of k is  $\begin{bmatrix} 3 \\ k \end{bmatrix}$  in Col A?

- (b) For what value(s) of k is  $\begin{bmatrix} 3 \\ k \end{bmatrix}$  in Nul A?
- (c) Give a basis for  $\operatorname{Nul} A^2$ .
- (d) Is  $\operatorname{Nul} A = \operatorname{Nul} A^2$ ? Justify your answer.
- (3) 7. Suppose A and B are  $n \times n$  matrices where A has linearly independent columns and B is invertible.
  - (a) Simplify  $(BAB^{-1})^2$ .
  - (b) Simplify  $(BAB^{-1})^{-1}$ .
  - (c) Does  $BAB^{-1}$  have linearly independent columns? Justify your answer.
- (7) 8. Fill in the blanks. The missing word is **must**, **might** or **cannot**.
  - (a) If  $\mathbf{y} \in \operatorname{Col} A$  then  $A\mathbf{x} = \mathbf{y}$  \_\_\_\_\_ be inconsistent.
  - (b) If  $\mathbf{y} \in \operatorname{Col} A$  then  $\mathbf{y}$  \_\_\_\_\_ be in  $\operatorname{Nul} A$ .
  - (c) If  $\mathbf{y} \in \operatorname{Col} A$  then  $\mathbf{y}$  \_\_\_\_\_ be in  $\operatorname{Row} A^T$ .
  - (d) If  $\mathbf{x} \in \operatorname{Col} A$  and  $\mathbf{y} \in \operatorname{Col} A$  then  $\mathbf{x} + \mathbf{y}$  \_\_\_\_\_ be in  $\operatorname{Col} A$ .
  - (e) Suppose A is a  $5 \times 7$  matrix then Row A and Col A \_\_\_\_\_ have the same dimension.
  - (f) Suppose A is a  $5 \times 7$  matrix then Nul A \_\_\_\_\_\_ be 3 dimensional.
  - (g) Suppose A is a  $5 \times 7$  matrix of rank 4, then Nul  $A^T$  \_\_\_\_\_ be 3 dimensional.
- (6) 9. Let  $A = \begin{bmatrix} 2 & -3 & 4 \\ 8 & -8 & 18 \\ 6 & -17 & 13 \end{bmatrix}$ 
  - (a) Find lower triangular matrix L and upper triangular matrix U so that A = LU.
  - (b) Do the same for  $A^T$ . (Hint: No additional computation is required.)
  - (c) What is  $\det A$ ?
  - (d) Find an elementary matrix E such that  $EA = \begin{bmatrix} 2 & -3 & 4 \\ 8 & -8 & 18 \\ 0 & -8 & 1 \end{bmatrix}$ .
- (6) 10. Let U be an  $n \times n$  matrix which is partitioned as  $U = \begin{bmatrix} 0 & I \\ A & B \end{bmatrix}$ .
  - (a) Assume A is invertible. Write  $U^{-1}$  as a partitioned matrix.
  - (b) Use part (a) to find the inverse of M where  $M = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 7 & 5 & 3 & 2 & 6 \\ 4 & 3 & 2 & 1 & 5 \end{bmatrix}$
- (7) 11. Let  $A = \begin{bmatrix} 2 & 3 & 3 & 2 \\ 4 & 3 & 5 & 1 \\ 6 & 0 & 0 & 3 \\ 7 & 0 & 0 & 4 \end{bmatrix}$ ,  $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$  and  $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$

- (a) Find  $\det A$ .
- (b) Use Cramer's Rule to solve  $A\mathbf{x} = \mathbf{b}$  for  $x_4$  only.
- (c) What is  $\det(-2A^{-1})$ ?
- (d) What is  $\det(A^{-1}A^TA)$ ?
- (7) 12. Let  $V = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a = 2d \text{ and } bc \le 0 \right\}$ .
  - (a) Is  $\mathbf{0}$  in V?
  - (b) Is V closed under scalar multiplication? Justify your answer. No credit is given without a justification.
  - (c) Is V closed under addition? Justify your answer. No credit is given without a justification.
  - (d) Is V a subspace of  $\mathbb{R}^4$ ?
- (4) 13. Let  $V = \{p(x) \in \mathbb{P}_2 : p'(1) = p(1) \text{ and } p'(2) = p(2)\}$ . Given that V is a subspace of  $\mathbb{P}_2$  find a basis for V and state the dimension of V.
- (6) 14. Let  $\mathbf{u} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$ ,  $\mathbf{v} = \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix}$ ,  $\mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ ,  $\mathbf{x} = \begin{bmatrix} a \\ -2 \\ b \end{bmatrix}$  find the following:
  - (a) cosine of the angle between **u** and **v**,
  - (b) the area of the triangle determined by  $\mathbf{u}$  and  $\mathbf{v}$ ,
  - (c) the volume of the parallelepiped determined by  $\mathbf{u}$ ,  $\mathbf{v}$ , and  $\mathbf{w}$ ,
  - (d) all values of a and b such that  $\mathbf{x}$  is orthogonal to  $\mathbf{u}$ .
- (6) 15. Given the plane  $\mathcal{P}$ : x+y-z=11 and the line  $\mathcal{L}$ :  $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$  find the following:
  - (a) the point of intersection of  $\mathcal{P}$  and  $\mathcal{L}$ ,
  - (b) the distance from the point Q(2, -1, 3) to the plane  $\mathcal{P}$ ,
  - (c) the distance from the point R(1,0,1) to the line  $\mathcal{L}$ .
- (5) 16. (a) Show that the lines

$$\mathcal{L}_1 : \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix} + s \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} \qquad \qquad \mathcal{L}_2 : \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 7 \\ 5 \end{bmatrix} + t \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$$

intersect in a point and find the point of intersection.

- (b) Find a standard equation of the plane containing  $\mathcal{L}_1$  and  $\mathcal{L}_2$ .
- (4) 17. (a) Show that if  $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\|$  then  $\mathbf{x} \cdot \mathbf{y} \le 0$ 
  - (b) Prove the identity  $\|\mathbf{x} + \mathbf{y}\|^2 \|\mathbf{x} \mathbf{y}\|^2 = 4\mathbf{x} \cdot \mathbf{y}$

- (4) 18. Suppose  $A = [\mathbf{a}_1 \ \mathbf{a}_2 \cdots \mathbf{a}_n]$  is an  $n \times n$  matrix such that  $||A\mathbf{x}|| = ||\mathbf{x}||$  for all  $\mathbf{x} \in \mathbb{R}^n$ .
  - (a) Show that each column of A is a unit vector. (Hint: consider  $\mathbf{a}_i = A\mathbf{e}_i$ .)
  - (b) Show that any two different columns of A,  $\mathbf{a}_i$  and  $\mathbf{a}_j$ , are orthogonal. (Hint: Consider the result in part (a) and  $\|\mathbf{a}_i + \mathbf{a}_j\|^2$ .)
  - (c) Show that  $A^T A = I_n$ .
- (4) 19. A matrix X is called a **weak generalized inverse** of A if

$$AXA = A$$

(a) For what value of 
$$k$$
 is  $\begin{bmatrix} k & k \\ k & k \\ k & k \end{bmatrix}$  a weak generalized inverse of  $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ ?

For parts (b) and (c), suppose that X is a weak generalized inverse of  $m \times n$  matrix A (so you know that AXA = A even though A is not necessarily invertible).

- (b) Show that if **y** is any vector in  $\mathbb{R}^n$ , then (I XA)**y** is in Nul A.
- (c) Show that if the system  $A\mathbf{x} = \mathbf{b}$  is consistent then  $X\mathbf{b}$  will be a solution to this system.