1. Given the following homogeneous system $A\mathbf{x} = \mathbf{0}$:

$$\begin{bmatrix} -1 & 0 & 2 & -1 & 0 \\ 1 & 1 & -5 & 5 & 1 \\ 2 & 2 & -10 & 10 & 3 \\ 2 & 1 & -7 & 6 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- [4] (a) Write the solution to the system in parametric vector form.
- [1] (b) Write the zero vector in \mathbb{R}^4 as a nontrivial linear combination of the columns of A.
- [4] 2. Use techniques of linear algebra to find a polynomial $p(x) = a_0 + a_1x + a_2x^2$ such that p(2) = 0, p(-2) = 32 and p'(1) = -7.
- [3] 3. Let $\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ k \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} k \\ 0 \\ 2k+3 \end{bmatrix}$ and let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$. For what value(s) of k is:
 - (a) Span(S) all of \mathbb{R}^3 ?
 - (b) Span(S) a plane in \mathbb{R}^3 ?
 - (c) Span(S) a line in \mathbb{R}^3 ?
 - 4. Let $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by $T_1\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{c} -x + 2y \\ 2x 3y \end{array}\right]$.
- [1] (a) Find the standard matrix for T_1 .
- [3] (b) If \mathcal{L} is the line $\begin{bmatrix} 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ k \end{bmatrix}$, then for what value(s) of k, will $T_1(\mathcal{L})$ be a horizontal line in \mathbb{R}^2 ?
- [3] (c) Now suppose that the composition $T_1 \circ T_2$ is also a linear transformation whose standard matrix is $\begin{bmatrix} 1 & -2 & -3 \\ -3 & 5 & 7 \end{bmatrix}$.
 - i. Identify the domain and codomain of T_2 .
 - ii. Find the standard matrix for T_2 .
- [3] 5. Suppose that the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, and that $\mathbf{x} = 2\mathbf{u} + 3\mathbf{w}$ and $\mathbf{y} = \mathbf{v} + 2\mathbf{w}$. Prove that the set $\{\mathbf{u}, \mathbf{x}, \mathbf{y}\}$ is linearly independent.
- [3] 6. Let $A = \begin{bmatrix} 1 & 6 \\ 2 & 7 \\ 3 & 8 \\ 4 & 9 \end{bmatrix}$. Find an LU factorization of A, where L is unit lower triangular and U is upper triangular.
- [4] 7. Let $A = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & k \end{bmatrix}$ and $B = \begin{bmatrix} a+2b+4c & d+2e+4f & g+2h+4k \\ 3a+4b+7c & 3d+4e+7f & 3g+4h+7k \\ 5a+7b+8c & 5d+7e+8f & 5g+7h+8k \end{bmatrix}$
 - (a) Find a matrix C such that B = CA
 - (b) Find the value of λ such that det $B = \lambda \det A$ for all possible choices of A.
- [4] 8. Let A be a 3×3 matrix and let det A = -2.

- (a) Find det $(A^T A^2 (-2A)^{-1})$.
- (b) Find $\det(\operatorname{adj}(2A))$.
- [6] 9. (a) Find matrices W, X, Y and Z such that $\begin{bmatrix} O & A \\ B & O \end{bmatrix} \begin{bmatrix} W & X \\ Y & Z \end{bmatrix} = \begin{bmatrix} I & O \\ O & I \end{bmatrix}$ (where A and B are invertible matrices).
 - (b) Use the above result to find C^{-1} , where $C = \begin{bmatrix} 0 & 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 1 & 2 \\ 2 & 1 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$.
- [3] 10. Use Cramer's Rule to solve the system:

$$7x - 9y = 11$$
$$4x + 5y = -2$$

- [3] 11. Simplify the matrix expression $(B(B+I)^{-1})^{-1} B^{-1}$
- $[6] \ 12. \ \text{Given } A = \begin{bmatrix} 3 & 6 & 2 & 1 & 5 & 2 & 2 \\ 1 & 2 & 1 & 0 & 2 & 0 & -3 \\ 1 & 2 & 0 & 1 & 1 & 1 & 4 \\ 1 & 2 & 1 & 0 & 2 & 1 & 1 \\ 1 & 2 & 0 & 0 & 3 & 0 & -1 \end{bmatrix} \sim R = \begin{bmatrix} 1 & 2 & 0 & 0 & 3 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 0 & -2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$
 - (a) Row A is a subspace of \mathbb{R}^n for what value of n?
 - (b) Without calculation, give a basis for Row A.
 - (c) Col A is a subspace of \mathbb{R}^m for what value of m?
 - (d) Without calculation, give a basis for $\operatorname{Col} A$.
 - (e) What is rank A^T ?
 - (f) What is dim Nul A^T ?
- [4] 13. Let $W = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 : x_1 = 0 \text{ or } x_2 = 0 \right\}.$
 - (a) Is $\mathbf{0}$ in W? Justify your answer.
 - (b) Is W closed under scalar multiplication? Justify your answer.
 - (c) Is W closed under vector addition? Justify your answer.
 - (d) Is W a subspace of \mathbb{R}^2 ? Explain.
- [3] 14. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Find a 2×2 matrix B such that AB = O but $BA \neq O$ (where O is the zero matrix).
- [6] 15. In question 14 you saw that there can be non-zero $n \times n$ matrices A and B such that AB = O but $BA \neq O$. Now let A and B be any two such matrices.
 - (a) Show that each column of B is in Nul A.

- (b) Show that even though $BA \neq O$, it must be true that $(BA)^2 = O$.
- (c) Show that B is not invertible.
- [4] 16. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Let V be the set of all 2×2 matrices X such that AX = O. Given that V is a vector space, find a basis for V.
- [4] 17. $V = \{p(x) \in \mathbb{P}_2 : p(2) = 0\}$ is a vector space. Find a basis for V and determine the dimension of V.
- [2] 18. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - (a) What is the dimension of the range of T if T is a one-to-one mapping? Explain.
 - (b) What is the dimension of the kernel of T if T is onto? Explain.
- [4] 19. (a) Draw $\{(1-t)\mathbf{u} + t\mathbf{v} : 0 \le t \le 1\}$
 - (b) Draw $\{s\mathbf{u} + t\mathbf{v} : 0 \le s \le 1, 0 \le t \le 1/2\}$
 - (c) $\operatorname{Draw} \operatorname{Proj}_{\mathbf{v}} \mathbf{u} + \operatorname{Proj}_{\mathbf{u}} \mathbf{v}$.
 - (d) Draw $\operatorname{Proj}_{\mathbf{v}}\mathbf{u} \operatorname{Perp}_{\mathbf{v}}\mathbf{u}$.

- 20. Let \mathcal{L} be the line given by $\mathbf{x} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
- [1] (a) Plot \mathcal{L} .
- [3] (b) Find the distance from \mathcal{L} to the origin.
- [2] (c) For what a and b will the the line $\mathbf{x} = \begin{bmatrix} 1 \\ a \end{bmatrix} + t \begin{bmatrix} 1 \\ b \end{bmatrix}$ be the same line as \mathcal{L} ?
- [2] (d) Where does \mathcal{L} intersect the x-axis?
- [2] (e) What is the cosine of the angle between \mathcal{L} and the x-axis?
 - 21. Span $\left\{ \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$ is a plane in \mathbb{R}^3 .
- [3] (a) Find an equation in the form ax + by + cz = d for this plane.
- [2] (b) Find an equation for a line through the origin perpendicular to this plane.
- [1] (c) For what k is $\begin{bmatrix} 1 \\ 2 \\ k \end{bmatrix}$ part of this plane?
- [3] 22. Give two different unit vectors that are orthogonal to both $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$.
- [3] 23. Let \mathbf{u} and \mathbf{v} be non-zero vectors in \mathbb{R}^3 . Show that if $\frac{1}{\mathbf{u} \cdot \mathbf{v}} (\mathbf{u} \times \mathbf{v})$ is a unit vector then the angle between \mathbf{u} and \mathbf{v} is 45° or 135° .

Answers

1. (a)
$$\mathbf{x} = s \begin{bmatrix} 2 \\ 3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ -4 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

(b) Use part (a) and give non-zero values to s and/or t to generate a set of weights; for instance s = 1 and t = 1 gives $\mathbf{x} = (1, -1, 1, 1, 0)$:

$$\begin{bmatrix} -1\\1\\2\\2 \end{bmatrix} - \begin{bmatrix} 0\\1\\2\\1 \end{bmatrix} + \begin{bmatrix} 2\\-5\\-10\\-7 \end{bmatrix} + \begin{bmatrix} -1\\5\\10\\6 \end{bmatrix} + 0 \begin{bmatrix} 0\\1\\3\\-1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$

- 2. $p(x) = 14 8x + \frac{1}{2}x^2$
- 3. (a) $k \neq -1, 3$ (b) k = -1, 3 (c) no value of k
- 4. (a) $\begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}$ (b) $\frac{2}{3}$ (c) i. Domain is \mathbb{R}^3 , codomain is \mathbb{R}^2 ii. $\begin{bmatrix} -3 & 4 & 5 \\ -1 & 1 & 1 \end{bmatrix}$
- 5. You'll want to show that $a_1\mathbf{u} + a_2\mathbf{x} + a_3\mathbf{y} = \mathbf{0}$ has no non-trivial solution. Making the substitutions for \mathbf{x} and \mathbf{y} and rearranging, the equation becomes $(a_1 + 2a_2)\mathbf{u} + (3a_2 + 2a_3)\mathbf{w} + a_3\mathbf{v} = \mathbf{0}$. Since the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, all of the weights in the second equation much be zero. Use standard linear algebra techniques to show that the system of equations

$$\begin{cases} a_1 + 2a_2 &= 0\\ 3a_2 + 2a_3 &= 0\\ a_3 &= 0 \end{cases}$$
 has only the trivial solution.

6.
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & -5 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

- 7. (a) $\begin{bmatrix} 1 & 2 & 4 \\ 3 & 4 & 7 \\ 5 & 7 & 8 \end{bmatrix}$ (b) $\lambda = 9$ (the determinant of C)
- 8. (a) $-\frac{1}{2}$ (b) 2^8

9. (a)
$$\begin{bmatrix} W & X \\ Y & Z \end{bmatrix} = \begin{bmatrix} O & B^{-1} \\ A^{-1} & O \end{bmatrix}$$
 (b) $C^{-1} = \begin{bmatrix} 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 1 & -2 & 6 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & -2 & 0 & 0 & 0 \\ -1/2 & 3/2 & 0 & 0 & 0 \end{bmatrix}$

10.
$$x = \frac{37}{71}, y = -\frac{58}{71}$$

11. The expression simplifies to I.

12. a)
$$n = 7$$
 b)
$$\left\{ \begin{bmatrix} 1\\2\\0\\0\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\\-1\\0\\-2 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\-2\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\1\\4 \end{bmatrix} \right\}$$
 c) $m = 5$ d) b)
$$\left\{ \begin{bmatrix} 3\\1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\1\\0\\0 \end{bmatrix} \right\}$$
 e) 4 f) 1

- e) 4 f) 1
- 13. W contains 0 and is closed under scalar multiplication, but is not closed under vector addition and therefore is not a subspace of \mathbb{R}^2 .
- 14. Multiple answers are possible. One example is $\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$.
- (a) Let \mathbf{b}_1 and \mathbf{b}_2 be the columns of B. 15.

$$AB = [A\mathbf{b}_1 A\mathbf{b}_2] = [\mathbf{0} \ \mathbf{0}] = O$$

Since $A\mathbf{b}_1 = \mathbf{0}$ and $A\mathbf{b}_2 = \mathbf{0}$, \mathbf{b}_1 and \mathbf{b}_2 are in Nul A.

(b) Proof:

$$(BA)^2 = (BA)(BA)$$

= $B(AB)A$ (associativity)
= BOA (since $AB = 0$)
= O

(c) Suppose B were invertible. Then we could do this:

$$AB = O$$

$$ABB^{-1} = OB^{-1}$$

$$A = O$$

But $A \neq O$. Contradiction. Therefore B is not invertible.

- 16. Multiple answers are possible. One example is $\left\{ \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \right\}$.
- 17. dim V = 2. One example of a basis for V is $\{x 2, x^2 4\}$.
- 18. a) n b) n m

19. a)

b)

c)

d)

20. a)

b)
$$\frac{7\sqrt{5}}{5}$$

c)
$$a = 4, b = 1/2$$

d)
$$(-7,0)$$

$$e) \ \frac{2\sqrt{5}}{5}$$

21. a)
$$-x + 2y + 3z = 0$$
 b) $\mathbf{x} = t \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$ c) $k = -1$

22.
$$\frac{1}{5\sqrt{6}} \begin{bmatrix} -1\\10\\-7 \end{bmatrix} \text{ and } \frac{-1}{5\sqrt{6}} \begin{bmatrix} -1\\10\\-7 \end{bmatrix}$$

23.
$$\left| \left| \frac{1}{\mathbf{u} \cdot \mathbf{v}} (\mathbf{u} \times \mathbf{v}) \right| \right|$$
, so $\left| \frac{1}{\mathbf{u} \cdot \mathbf{v}} \right| ||(\mathbf{u} \times \mathbf{v})|| = 1$, so $||(\mathbf{u} \times \mathbf{v})|| = |\mathbf{u} \cdot \mathbf{v}|$.

It is always true that $||(\mathbf{u} \times \mathbf{v})|| = ||\mathbf{u}|| ||\mathbf{v}|| \sin \theta$, so now we see that $|\mathbf{u} \cdot \mathbf{v}| = ||\mathbf{u}|| ||\mathbf{v}|| \sin \theta$, so $\frac{|\mathbf{u} \cdot \mathbf{v}|}{||\mathbf{u}|| ||\mathbf{v}||} = \sin \theta$.

Since we also know that $\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \, ||\mathbf{v}||} = \cos \theta$, we now have $\pm \cos \theta = \sin \theta$, or $\tan \theta = \pm 1$, so finally $\theta = 45^{\circ}$ or 135° .