1. Given the following homogeneous system $A \mathbf{x}=\mathbf{0}$:

$$
\left[\begin{array}{rrrrr}
-1 & 0 & 2 & -1 & 0 \\
1 & 1 & -5 & 5 & 1 \\
2 & 2 & -10 & 10 & 3 \\
2 & 1 & -7 & 6 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

[4] (a) Write the solution to the system in parametric vector form.
[1] (b) Write the zero vector in \mathbb{R}^{4} as a nontrivial linear combination of the columns of A.
[4] 2. Use techniques of linear algebra to find a polynomial $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$ such that $p(2)=0$, $p(-2)=32$ and $p^{\prime}(1)=-7$.
$[3] \quad$ 3. Let $\mathbf{v}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 0 \\ k\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}k \\ 0 \\ 2 k+3\end{array}\right]$ and let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. For what value(s) of k is:
(a) $\operatorname{Span}(S)$ all of \mathbb{R}^{3} ?
(b) $\operatorname{Span}(S)$ a plane in \mathbb{R}^{3} ?
(c) $\operatorname{Span}(S)$ a line in \mathbb{R}^{3} ?
4. Let $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by $T_{1}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}-x+2 y \\ 2 x-3 y\end{array}\right]$.
[1] (a) Find the standard matrix for T_{1}.
[3] (b) If \mathcal{L} is the line $\left[\begin{array}{l}2 \\ 0\end{array}\right]+t\left[\begin{array}{l}1 \\ k\end{array}\right]$, then for what value(s) of k, will $T_{1}(\mathcal{L})$ be a horizontal line in \mathbb{R}^{2} ?
[3] (c) Now suppose that the composition $T_{1} \circ T_{2}$ is also a linear transformation whose standard matrix is $\left[\begin{array}{rrr}1 & -2 & -3 \\ -3 & 5 & 7\end{array}\right]$.
i. Identify the domain and codomain of T_{2}.
ii. Find the standard matrix for T_{2}.
[3] 5. Suppose that the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, and that $\mathbf{x}=2 \mathbf{u}+3 \mathbf{w}$ and $\mathbf{y}=\mathbf{v}+2 \mathbf{w}$. Prove that the set $\{\mathbf{u}, \mathbf{x}, \mathbf{y}\}$ is linearly independent.
[3] 6. Let $A=\left[\begin{array}{ll}1 & 6 \\ 2 & 7 \\ 3 & 8 \\ 4 & 9\end{array}\right]$. Find an $L U$ factorization of A, where L is unit lower triangular and U is upper triangular.
[4] 7. Let $A=\left[\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & k\end{array}\right]$ and $B=\left[\begin{array}{ccc}a+2 b+4 c & d+2 e+4 f & g+2 h+4 k \\ 3 a+4 b+7 c & 3 d+4 e+7 f & 3 g+4 h+7 k \\ 5 a+7 b+8 c & 5 d+7 e+8 f & 5 g+7 h+8 k\end{array}\right]$
(a) Find a matrix C such that $B=C A$.
(b) Find the value of λ such that $\operatorname{det} B=\lambda \operatorname{det} A$ for all possible choices of A.
[4] 8 . Let A be a 3×3 matrix and let $\operatorname{det} A=-2$.
(a) Find $\operatorname{det}\left(A^{T} A^{2}(-2 A)^{-1}\right)$.
(b) Find $\operatorname{det}(\operatorname{adj}(2 A))$.
[6] 9. (a) Find matrices W, X, Y and Z such that $\left[\begin{array}{cc}O & A \\ B & O\end{array}\right]\left[\begin{array}{cc}W & X \\ Y & Z\end{array}\right]=\left[\begin{array}{cc}I & O \\ O & I\end{array}\right]$ (where A and B are invertible matrices).
(b) Use the above result to find C^{-1}, where $C=\left[\begin{array}{lllll}0 & 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 1 & 2 \\ 2 & 1 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}\right]$.
[3] 10. Use Cramer's Rule to solve the system:

$$
\begin{aligned}
& 7 x-9 y=11 \\
& 4 x+5 y=-2
\end{aligned}
$$

[3] 11. Simplify the matrix expression $\left(B(B+I)^{-1}\right)^{-1}-B^{-1}$
[6] 12. Given $A=\left[\begin{array}{rrrrrrr}3 & 6 & 2 & 1 & 5 & 2 & 2 \\ 1 & 2 & 1 & 0 & 2 & 0 & -3 \\ 1 & 2 & 0 & 1 & 1 & 1 & 4 \\ 1 & 2 & 1 & 0 & 2 & 1 & 1 \\ 1 & 2 & 0 & 0 & 3 & 0 & -1\end{array}\right] \sim R=\left[\begin{array}{rrrrrrr}1 & 2 & 0 & 0 & 3 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 0 & -2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) Row A is a subspace of \mathbb{R}^{n} for what value of n ?
(b) Without calculation, give a basis for Row A.
(c) $\operatorname{Col} A$ is a subspace of \mathbb{R}^{m} for what value of m ?
(d) Without calculation, give a basis for $\operatorname{Col} A$.
(e) What is rank A^{T} ?
(f) What is $\operatorname{dim} \operatorname{Nul} A^{T}$?
[4] 13. Let $W=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}: x_{1}=0\right.$ or $\left.x_{2}=0\right\}$.
(a) Is $\mathbf{0}$ in W ? Justify your answer.
(b) Is W closed under scalar multiplication? Justify your answer.
(c) Is W closed under vector addition? Justify your answer.
(d) Is W a subspace of \mathbb{R}^{2} ? Explain.
[3] 14. Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Find a 2×2 matrix B such that $A B=O$ but $B A \neq O$ (where O is the zero matrix).
[6] 15. In question 14 you saw that there can be non-zero $n \times n$ matrices A and B such that $A B=O$ but $B A \neq O$. Now let A and B be any two such matrices.
(a) Show that each column of B is in $\operatorname{Nul} A$.
(b) Show that even though $B A \neq O$, it must be true that $(B A)^{2}=O$.
(c) Show that B is not invertible.
[4] 16. Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Let V be the set of all 2×2 matrices X such that $A X=O$. Given that V is a vector space, find a basis for V.
[4] 17. $V=\left\{p(x) \in \mathbb{P}_{2}: p(2)=0\right\}$ is a vector space. Find a basis for V and determine the dimension of V.
[2] 18. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.
(a) What is the dimension of the range of T if T is a one-to-one mapping? Explain.
(b) What is the dimension of the kernel of T if T is onto? Explain.
[4] 19. (a) Draw $\{(1-t) \mathbf{u}+t \mathbf{v}: 0 \leq t \leq 1\}$
(b) $\operatorname{Draw}\{s \mathbf{u}+t \mathbf{v}: 0 \leq s \leq 1,0 \leq t \leq 1 / 2\}$
(c) Draw $\operatorname{Proj}_{\mathbf{v}} \mathbf{u}+\operatorname{Proj}_{\mathbf{u}} \mathbf{v}$.
(d) Draw $\operatorname{Proj}_{\mathbf{v}} \mathbf{u}-\operatorname{Perp}_{\mathbf{v}} \mathbf{u}$.

20. Let \mathcal{L} be the line given by $\mathbf{x}=\left[\begin{array}{r}-1 \\ 3\end{array}\right]+t\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
[1] (a) Plot \mathcal{L}.
[3] (b) Find the distance from \mathcal{L} to the origin.
$[2] \quad$ (c) For what a and b will the the line $\mathbf{x}=\left[\begin{array}{l}1 \\ a\end{array}\right]+t\left[\begin{array}{l}1 \\ b\end{array}\right]$ be the same line as \mathcal{L} ?
[2] (d) Where does \mathcal{L} intersect the x-axis?
[2] (e) What is the cosine of the angle between \mathcal{L} and the x-axis?
21. Span $\left\{\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$ is a plane in \mathbb{R}^{3}.
[3] (a) Find an equation in the form $a x+b y+c z=d$ for this plane.
[2] (b) Find an equation for a line through the origin perpendicular to this plane.
[1] (c) For what k is $\left[\begin{array}{l}1 \\ 2 \\ k\end{array}\right]$ part of this plane?
[3] 22. Give two different unit vectors that are orthogonal to both $\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]$.
[3] 23. Let \mathbf{u} and \mathbf{v} be non-zero vectors in \mathbb{R}^{3}. Show that if $\frac{1}{\mathbf{u} \cdot \mathbf{v}}(\mathbf{u} \times \mathbf{v})$ is a unit vector then the angle between \mathbf{u} and \mathbf{v} is 45° or 135°.

Answers

1. (a) $\mathbf{x}=s\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{r}-1 \\ -4 \\ 0 \\ 1 \\ 0\end{array}\right]$
(b) Use part (a) and give non-zero values to s and/or t to generate a set of weights; for instance $s=1$ and $t=1$ gives $\mathbf{x}=(1,-1,1,1,0)$:

$$
\left[\begin{array}{r}
-1 \\
1 \\
2 \\
2
\end{array}\right]-\left[\begin{array}{l}
0 \\
1 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{r}
2 \\
-5 \\
-10 \\
-7
\end{array}\right]+\left[\begin{array}{r}
-1 \\
5 \\
10 \\
6
\end{array}\right]+0\left[\begin{array}{r}
0 \\
1 \\
3 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

2. $p(x)=14-8 x+\frac{1}{2} x^{2}$
3. (a) $k \neq-1,3$
(b) $k=-1,3$
(c) no value of k
4. (a) $\left[\begin{array}{rr}-1 & 2 \\ 2 & -3\end{array}\right]$
(b) $\frac{2}{3}$
(c) i. Domain is \mathbb{R}^{3}, codomain is \mathbb{R}^{2}
ii. $\left[\begin{array}{ccc}-3 & 4 & 5 \\ -1 & 1 & 1\end{array}\right]$
5. You'll want to show that $a_{1} \mathbf{u}+a_{2} \mathbf{x}+a_{3} \mathbf{y}=\mathbf{0}$ has no non-trivial solution. Making the substitutions for \mathbf{x} and \mathbf{y} and rearranging, the equation becomes $\left(a_{1}+2 a_{2}\right) \mathbf{u}+\left(3 a_{2}+2 a_{3}\right) \mathbf{w}+a_{3} \mathbf{v}=\mathbf{0}$. Since the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, all of the weights in the second equation much be zero. Use standard linear algebra techniques to show that the system of equations
$\left\{\begin{aligned} a_{1}+2 a_{2} & =0 \\ 3 a_{2}+2 a_{3} & =0 \\ a_{3} & =0\end{aligned}\right.$ has only the trivial solution.
6. $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 0 & 1\end{array}\right]\left[\begin{array}{rr}1 & 6 \\ 0 & -5 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
7. (a) $\left[\begin{array}{lll}1 & 2 & 4 \\ 3 & 4 & 7 \\ 5 & 7 & 8\end{array}\right]$
(b) $\lambda=9$ (the determinant of C)
8. (a) $-\frac{1}{2} \quad$ (b) 2^{8}
9. (a) $\left[\begin{array}{cc}W & X \\ Y & Z\end{array}\right]=\left[\begin{array}{cc}O & B^{-1} \\ A^{-1} & O\end{array}\right] \quad$ (b) $C^{-1}=\left[\begin{array}{ccccc}0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 1 & -2 & 6 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & -2 & 0 & 0 & 0 \\ -1 / 2 & 3 / 2 & 0 & 0 & 0\end{array}\right]$
10. $x=\frac{37}{71}, y=-\frac{58}{71}$
11. The expression simplifies to I.
12. a) $n=7$
b) $\left\{\left[\begin{array}{r}1 \\ 2 \\ 0 \\ 0 \\ 3 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{r}0 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{r}0 \\ 0 \\ 0 \\ 1 \\ -2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 4\end{array}\right]\right\}$
c) $m=5 \quad$ d) b) $\left\{\left[\begin{array}{l}3 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$
e) $4 \quad$ f) 1
13. W contains $\mathbf{0}$ and is closed under scalar multiplication, but is not closed under vector addition and therefore is not a subspace of \mathbb{R}^{2}.
14. Multiple answers are possible. One example is $\left[\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right]$.
15. (a) Let \mathbf{b}_{1} and \mathbf{b}_{2} be the columns of B.

$$
A B=\left[A \mathbf{b}_{1} A \mathbf{b}_{2}\right]=\left[\begin{array}{ll}
\mathbf{0} & \mathbf{0}
\end{array}\right]=O
$$

Since $A \mathbf{b}_{1}=\mathbf{0}$ and $A \mathbf{b}_{2}=\mathbf{0}, \mathbf{b}_{1}$ and \mathbf{b}_{2} are in $N u l$.
(b) Proof:

$$
\begin{array}{rlr}
(B A)^{2} & =(B A)(B A) & \\
& =B(A B) A & \\
& \text { (associativity) } \\
& =B O A & \\
& =O &
\end{array}
$$

(c) Suppose B were invertible. Then we could do this:

$$
\begin{aligned}
A B & =O \\
A B B^{-1} & =O B^{-1} \\
A & =O
\end{aligned}
$$

But $A \neq O$. Contradiction. Therefore B is not invertible.
16. Multiple answers are possible. One example is $\left\{\left[\begin{array}{rr}1 & 0 \\ -1 & 0\end{array}\right],\left[\begin{array}{rr}0 & 1 \\ 0 & -1\end{array}\right]\right\}$.
17. $\operatorname{dim} V=2$. One example of a basis for V is $\left\{x-2, x^{2}-4\right\}$.
18. a) n b) $n-m$
19. a)

c)

b)

d)

20. a)
b) $\frac{7 \sqrt{5}}{5}$
c) $a=4, b=1 / 2$
d) $(-7,0)$
e) $\frac{2 \sqrt{5}}{5}$

21. a) $-x+2 y+3 z=0 \quad$ b) $\mathbf{x}=t\left[\begin{array}{r}-1 \\ 2 \\ 3\end{array}\right]$
c) $k=-1$
22. $\frac{1}{5 \sqrt{6}}\left[\begin{array}{r}-1 \\ 10 \\ -7\end{array}\right]$ and $\frac{-1}{5 \sqrt{6}}\left[\begin{array}{r}-1 \\ 10 \\ -7\end{array}\right]$
23. $\left\|\frac{1}{\mathbf{u} \cdot \mathbf{v}}(\mathbf{u} \times \mathbf{v})\right\|$, so $\left|\frac{1}{\mathbf{u} \cdot \mathbf{v}}\right|\|(\mathbf{u} \times \mathbf{v})\|=1$, so $\|(\mathbf{u} \times \mathbf{v})\|=|\mathbf{u} \cdot \mathbf{v}|$.

It is always true that $\|(\mathbf{u} \times \mathbf{v})\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$, so now we see that $|\mathbf{u} \cdot \mathbf{v}|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$, so $\frac{|\mathbf{u} \cdot \mathbf{v}|}{\|\mathbf{u}\|\|\mathbf{v}\|}=\sin \theta$.
Since we also know that $\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\cos \theta$, we now have $\pm \cos \theta=\sin \theta$, or $\tan \theta= \pm 1$, so finally $\theta=45^{\circ}$ or 135°.

