1. (5 points) You are given the following matrix A and vector \mathbf{b} .

$$A = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 6 & 3 & 2 \\ 3 & 9 & -1 & -1 \\ -4 & -12 & 4 & 1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 6 \\ 11 \\ 3 \\ -2 \end{bmatrix}$$

- (a) Is $\begin{bmatrix} 2 \\ 0 \\ 1 \\ 2 \end{bmatrix}$ is a solution to the $A\mathbf{x} = \mathbf{b}$?
- (b) Find the general solution to the system $A\mathbf{x} = \mathbf{b}$.
- 2. (6 points) Let

$$A = \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{array} \right]$$

- (a) Is it true that for each **b** in \mathbb{R}^3 the system $A\mathbf{x} = \mathbf{b}$ is consistent? Justify your answer.
- (b) Evaluate AA^T .
- (c) True or False (Justify.)
 - i. A and AA^T have the same column space.
 - ii. A and AA^T have the same null space.
 - iii. Row(A) and $Row(AA^T)$ are not the same, but they have the same dimension.
- **3.** (4 points) Find the values of a, b and c in the quadratic polynomial $f(x) = ax^2 + bx + c$ if f(-1) = -4, f(2) = 5 and f(3) = 0.
- **4.** (4 points) Given $A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 0 & 4 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 15 \\ 4 \end{bmatrix}$.

Solve the system $A\mathbf{x} = \mathbf{b}$ using the given LU factorization.

- **5.** (8 points) Let $A = \begin{bmatrix} 2 & -2 & 3 \\ 0 & 1 & 2 \\ 1 & -3 & -3 \end{bmatrix}$.
 - (a) Find A^{-1} .
 - (b) Consider the 5×5 matrix $U = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 2 & -2 & 3 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 1 & -3 & -3 & 0 & 0 \end{bmatrix}$, which may also be viewed as

the block matrix $\begin{bmatrix} 0 & I \\ A & 0 \end{bmatrix}$. Use your answer from part (a) and this block matrix to find U^{-1} .

- **6.** (6 points) Let A, B, and C be 3×3 matrices. It is given that $\det(A) = 3$ and $\det(B) = 7$. It is also given that C is noninvertible. For each of the following expressions, either evaluate or write "not enough information".
 - (a) $\det(10A^2B^{-1})$
 - (b) det(A+B)
 - (c) $\det(AC + BC)$
- **7.** (5 points) Let $A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & -4 & 3 \\ 3 & -2 & 1 \end{bmatrix}$
 - (a) Find det(A).
 - (b) Given $A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, solve for x_2 only, using Cramer's Rule.
- **8.** (7 points) Consider the set $S = \{A : A \in M_{3\times 3} \text{ and } \operatorname{rank}(A) \leq 2\}$. (Justify all answers.)
 - (a) Give an example of a non-zero matrix in S.
 - (b) Does S contain the zero matrix?
 - (c) Is S closed under addition?
 - (d) Is S closed under scalar multiplication?
 - (e) Is S a subspace of $M_{3\times 3}$?
- 9. (6 points) You are given the vector space

$$V = \{p(x) : p \in \mathbb{P}_3 \text{ and } p'(0) = 0 \text{ and } p''(0) = 0\}$$

Find a basis for V.

- **10.** (6 points) Use the words MIGHT, CANNOT, or MUST to complete the statements below, as appropriate:
 - (a) If the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ spans a plane in \mathbb{R}^3 , then the set $\{\mathbf{u}, \mathbf{v}\}$ _____ span the same plane.
 - (b) If the column vectors of a square matrix A span all of \mathbb{R}^3 , then the determinant of A _____ be zero.
 - (c) The columns of an $n \times n$ elementary matrix _____ be a basis for \mathbb{R}^n .
 - (d) If $A \in M_{5\times 6}$, then rank(A) _____ be equal to rank (A^T)
 - (e) For any invertible matrix A, the rank of A ______ be the same as the rank of A^2 .

- (f) If a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ given by $T(\mathbf{x}) = A\mathbf{x}$ is onto, then A _____ be invertible.
- **11.** (6 points) Let \mathcal{L} be the line $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
 - (a) Find a matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ is a rotation that transforms \mathcal{L} into a horizontal line.
 - (b) Find a non-zero matrix B such that $T(\mathbf{x}) = B\mathbf{x}$ transforms \mathcal{L} into a single point.
- 12. (11 points) Let \mathcal{L}_1 be the line $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$ and let \mathcal{L}_2 be the line $\mathbf{x} = \begin{bmatrix} 13 \\ 14 \\ 0 \end{bmatrix} + s \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$
 - (a) Find the point of intersection of \mathcal{L}_1 and \mathcal{L}_2 .
 - (b) Find an equation of the form ax + by + cz = d for the plane containing \mathcal{L}_1 and \mathcal{L}_2 .
 - (c) Find the distance from \mathcal{L}_1 to the origin.
- **13.** (8 points) Given A(-2, 1, 0), B(1, 5, 0), C(4, 0, 1).
 - (a) Find the area of the triangle $\triangle ABC$.
 - (b) Find an equation for the line through A that is perpendicular to the plane containing A, B, and C.
 - (c) Find a unit vector parallel to \overrightarrow{AB} .
 - (d) Find a point between A and B that is two units away from A.
- 14. (7 points) Let \mathcal{P}_1 be the plane 3x + y 4z = 10 and \mathcal{P}_2 be the plane -x + 3y z = 5.
 - (a) Find the cosine of the angle between \mathcal{P}_1 and \mathcal{P}_2 .
 - (b) Find an equation for the line through the origin that is parallel to both \mathcal{P}_1 and \mathcal{P}_2 .
- 15. (3 points) Suppose \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n such that $\|\mathbf{u}\| = 3$, $\|\mathbf{v}\| = 5$, and $\|\mathbf{u} + \mathbf{v}\| = 7$. Find the angle between \mathbf{u} and \mathbf{v} . Hint: start by looking at $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$.
- 16. (4 points) Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n . Show that if $\operatorname{Proj}_{\mathbf{v}}\mathbf{u} = \operatorname{Proj}_{\mathbf{v}}\mathbf{w}$, then $\mathbf{u} \mathbf{w}$ is perpendicular to \mathbf{v} .
- 17. (4 points) Given $T: M_{n \times n} \to M_{n \times n}$ defined by $T(X) = AXA^{-1}$.
 - (a) Show that det(T(X)) = det(X).
 - (b) Show that T(X)T(Y) = T(XY)

Answers

1. (a) Yes, (b)
$$\mathbf{x} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 2 \end{bmatrix} + t \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
, where $t \in \mathbb{R}$

- 2. (a) Yes, because A has a pivot in every row, (b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
 - (c) i. True: $Col(A) = Col(AA^T) = \mathbb{R}^3$
 - ii. False: $\dim \text{Nul}(A) = 2, \dim \text{Nul}(AA^T) = 0$
 - iii. True: $\dim \text{Row}(A) = \dim \text{Row}(AA^T) = 3$, but $\text{Row}(A) \subseteq \mathbb{R}^5$ and $\text{Row}(AA^3) \subseteq \mathbb{R}^3$

3.
$$a = -2, b = 5, c = 3$$

4.
$$\mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

5.
$$A^{-1} = \begin{bmatrix} -3 & 15 & 7 \\ -2 & 9 & 4 \\ 1 & -4 & -2 \end{bmatrix}$$
$$U^{-1} = \begin{bmatrix} 0 & 0 & -3 & 15 & 7 \\ 0 & 0 & -2 & 9 & 4 \\ 0 & 0 & 1 & -4 & -2 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

- 6. (a) $\frac{9000}{7}$, (b) not enough information, (c) 0
- 7. (a) 15, (b) $\frac{7}{15}$
- 8. (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, (b) Yes, since the rank of a zero matrix is 0. (c) No, since $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

and $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ are both in S, but their sum is not. (d) Yes. S is equal to the set of

all 3×3 matrices with determinant 0. If $\det(A) = 0$, then $= \det(kA) = k^3 \det(A) = k^3 \cdot 0 = 0$. (e) No, since S is not closed under addition.

- 9. $\mathcal{B} = \{1, x^3\}$
- 10. (a) might, (b) cannot, (c) must, (d) must, (e) must, (f) must

11. (a)
$$A = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$
, (b) $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

12. (a)
$$(7, 10, -2)$$
, (b) $x - y - z = -1$, (c) $\frac{\sqrt{91}}{7}$

13. (a)
$$\frac{\sqrt{754}}{2}$$
, (b) $\mathbf{x} = \begin{bmatrix} -2\\1\\0 \end{bmatrix} + t \begin{bmatrix} -4\\3\\27 \end{bmatrix}$ where $t \in \mathbb{R}$, (c) $\begin{bmatrix} \frac{3}{5}\\\frac{4}{5}\\0 \end{bmatrix}$, (3) $\begin{bmatrix} -\frac{4}{5}\\\frac{13}{5}\\0 \end{bmatrix}$

14. (a)
$$\frac{4}{\sqrt{286}}$$
, (b) $\mathbf{x} = t \begin{bmatrix} 11 \\ 7 \\ 10 \end{bmatrix}$ where $t \in \mathbb{R}$

- 15. $\frac{\pi}{3}$
- 16. Let $\operatorname{Proj}_{\mathbf{v}}\mathbf{u} = \operatorname{Proj}_{\mathbf{v}}\mathbf{w}$. We need to show that $(\mathbf{u} \mathbf{w}) \cdot \mathbf{v} = 0$. If $\mathbf{v} = \mathbf{0}$, then we are done. If $\mathbf{v} \neq \mathbf{0}$, we write $\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v} = \left(\frac{\mathbf{w} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$ and conclude that $\mathbf{u} \cdot \mathbf{v} = \mathbf{w} \cdot \mathbf{v}$. So, $\mathbf{u} \cdot \mathbf{v} \mathbf{w} \cdot \mathbf{v} = 0$, and finally $(\mathbf{u} \mathbf{w}) \cdot \mathbf{v} = 0$.
- 17. The definition of T tells us that A is invertible.
 - (a) $\det(T(X)) = \det(AXA^{-1}) = \det(A)\det(X)\det(A^{-1}) = \frac{\det(A)}{\det(A)}\det(X) = \det(X)$.
 - (b) $T(X)T(Y) = (AXA^{-1})(AYA^{-1}) = AX(A^{-1}A)YA^{-1} = AX(I)YA^{-1} = AXYA^{-1} = T(XY)$