1. (8 points) Given the following coefficient matrix A and vector b:

$$A = \begin{bmatrix} 1 & 1 & 3 & 3 \\ -1 & -1 & -3 & -3 \\ -2 & -1 & -4 & -3 \\ 0 & 1 & 2 & 3 \end{bmatrix} \mathbf{b} = \begin{bmatrix} -6 \\ 6 \\ 7 \\ -5 \end{bmatrix}$$

- (a) Find the general solution to $A\mathbf{x} = \mathbf{b}$
- (b) Find the specific solution such that $x_1 = x_2$ and $x_3 = x_4$.
- (c) Which columns of A (if any) are in the solution set of $A\mathbf{x} = \mathbf{b}$?
- (d) Which columns of A (if any) are in the null space of A?
- (e) Find a basis for the row space of A.
- 2. (6 points) Let A and B be 4×4 matrices with det A = 3 and det B = -2. Find the following or indicate that there is not enough information, as necessary:
 - (a) $\det((2A)^{-1})$
 - (b) $\det(B^{-1}A^TB)$
 - (c) $\det(B + B^{-1})$
- 3. (7 points) Let $A = \begin{bmatrix} 2 & -2 & 2 & 3 \\ 0 & 2 & 1 & 1 \\ 1 & -1 & 0 & 1 \\ 0 & 0 & 6 & 2 \end{bmatrix}$.
 - (a) Find $\det A$.
 - (b) How many solutions does the homogeneous system of linear equations $A\mathbf{x} = 0$ have?
- **4.** (2 points) If A is a skew-symmetric $n \times n$ matrix, i.e., $A^T = -A$, show that when n is odd, $\det A = 0$.
- **5.** (6 points) Consider the quadratic polynomial $p(x) = a_0 + a_1 x + a_2 x^2$ that passes through the point (2, -1), and that has a tangent line with slope 2 at the point (1, -6).
 - (a) Find the initial augmented matrix that would allow us to solve for the coefficients of the polynomial p(x). Do not row reduce the matrix.
 - (b) Use Cramer's rule to solve for a_0 only.
- **6.** (3 points) Given that \mathbf{u} , \mathbf{v} , and \mathbf{w} are three linearly independent vectors in \mathbb{R}^n . For which value(s) of k will the vectors $\mathbf{u} + 2\mathbf{v}$, $\mathbf{v} + 3\mathbf{w}$ and $k\mathbf{u} + \mathbf{w}$ be linearly dependent?
- 7. (8 points) (a) Consider the block matrix $A = \begin{bmatrix} B & 0 \\ C & D \end{bmatrix}$ where B and D are invertible. Find a formula (as a block matrix) for A^{-1} .
 - (b) Use an appropriate partitioning to find the inverse of $A = \begin{bmatrix} -3 & 2 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 & 0 \\ 1 & 2 & 1 & -2 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{bmatrix}$.

- **8.** (7 points) Let $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 9 & 1 \\ 6 & -8 & k \end{bmatrix}$.
 - (a) Find an LU decomposition of A.
 - (b) Using the LU decomposition from part (a), what is the determinant of A?
 - (c) For what k is A not invertible?
 - (d) Write the matrix L as a product of elementary matrices.
- **9.** (6 points) (a) Let V be the set of all 2×2 upper triangular matrices. What is the dimension of V?
 - (b) Write the matrix $\begin{bmatrix} 19 & 20 \\ 0 & -3 \end{bmatrix}$ as a linear combination of the matrices $\begin{bmatrix} 2 & 5 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} -1 & 3 \\ 0 & 2 \end{bmatrix}$.
 - (c) Does the set $\left\{\begin{bmatrix}2 & 5\\0 & 1\end{bmatrix}, \begin{bmatrix}-1 & 3\\0 & 2\end{bmatrix}, \begin{bmatrix}19 & 20\\0 & -3\end{bmatrix}\right\}$ span the subspace of all 2×2 upper triangular matrices? Justify your answer.
- **10.** (3 points) In \mathbb{R}^3 let $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Let $W = \{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{u} \cdot \mathbf{x} = 0 \}$. Given that W is a subspaces of \mathbb{R}^3 , find a basis for W.
- 11. (5 points) (a) Find a standard matrix for the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that the vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$ are mapped onto the vectors $T(\mathbf{v}_1) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $T(\mathbf{v}_2) = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$.
 - (b) Use your answer in part (a) to find a vector \mathbf{u} such that $T(\mathbf{u}) = \begin{bmatrix} -2 \\ 10 \end{bmatrix}$.
- **12.** (6 points) Suppose that a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ follows the calculation $T\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a-2b \\ b^2-a \end{bmatrix}$.
 - (a) Evaluate $T\left(\begin{bmatrix}1\\2\end{bmatrix}\right)$ and $T\left(\begin{bmatrix}3\\6\end{bmatrix}\right)$.
 - (b) Explain why the results in part (a) imply that T is not a linear transformation.
 - (c) Find a nonzero vector \mathbf{x} such that $T(\mathbf{x}) = \mathbf{0}$.
- **13.** (11 points) Given the points A(5,2,0), B(7,0,-2), C(2,1,1) and D(4,3,4).
 - (a) Find a vector of length equal to 2 units which is parallel to the vector \overrightarrow{AB} .
 - (b) Find an equation for the line containing the points A and B.
 - (c) Find the distance between the point D and the line found in part (b).
 - (d) Find the closest point on the line found in part (b) to the point D.
 - (e) Find the area of the triangle with vertices $A,\,B$ and C.

- 14. (4 points) Let V be the set of 2×2 matrices that are not invertible.
 - (a) Is V closed under scalar multiplication? Justify your answer. (No credit will be given without justification.)
 - (b) Is V closed under addition? Justify your answer. (No credit will be given without justification.)
- 15. (4 points) Let A be a 2×2 matrix such that $S(\mathbf{x}) = A\mathbf{x}$ is a reflection.

Let B be a 2×2 matrix such that $T(\mathbf{x}) = B\mathbf{x}$ is a rotation.

Complete each of the following sentences with MUST, MIGHT, or CANNOT.

 A^2 equal A A^{-1} equal A B^3 equal Bequal $det(B^2)$ $\det(A^2)$

- **16.** (8 points) Given the lines \mathcal{L}_1 : $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + s \begin{vmatrix} 1 \\ -1 \\ 3 \end{vmatrix}$ and \mathcal{L}_2 : $\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 0 \\ -3 \\ 2 \end{vmatrix} + t \begin{vmatrix} 2 \\ 1 \\ 2 \end{vmatrix}$.
 - (a) Find the point of intersection between the lines.
 - (b) Determine the cosine of the acute angle formed by the lines.
 - (c) Find an equation of the form ax + by + cz = d for the plane containing the two lines.
 - (d) Find the x-intercept of the plane from part (c). (In other words, at what point do the plane and the x-axis meet?)
- 17. (3 points) Let **u** and **v** be two vectors in \mathbb{R}^n such that $\mathbf{u} + 2\mathbf{v}$ is orthogonal to $\mathbf{u} 2\mathbf{v}$, and $\|\mathbf{u}\| = 1$. Find $\|\mathbf{v}\|$.
- **18.** (3 points) Given the planes \mathcal{P}_1 : $x_1 + 2x_2 + x_3 = 4$ and \mathcal{P}_2 : $2x_1 + 5x_2 + 3x_3 = 1$, find an equation for the line parallel to both \mathcal{P}_1 and \mathcal{P}_2 and containing the point P(1,5,2).

Answers

1. (a)
$$\{x_1 = -1 - s, x_2 = -5 - 2s - 3t, x_3 = s, x_4 = t\}$$
 (b) $\{x_1 = 0, x_2 = 0, x_3 = -1, x_4 = -1\}$ (c) $\{\begin{bmatrix} 1 \\ -1 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -4 \\ 2 \end{bmatrix}\}$ (d) $\{\begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -3 \\ -3 \\ 3 \end{bmatrix}\}$ (e) $\{\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}\}$ 2. (a) $\frac{1}{48}$ (b) 3 (c) not enough information

(b)
$$\{x_1 = 0, x_2 = 0, x_3 = -1, x_4 = -1\}$$

(e) $\{\begin{bmatrix} 1\\0\\1\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\2\\3\end{bmatrix} \}$

(b) 1 (unique solution)

4. $A^T = -A \Rightarrow \det(A^T) = \det(-A) \Rightarrow \det(A) = (-1)^n \det(A)$ or $\det(A) = -\det(A)$ if n is odd $\Rightarrow \det(A) = 0$

5. (a)
$$\begin{bmatrix} 1 & 2 & 4 & | & -1 \\ 1 & 1 & 1 & | & -6 \\ 0 & 1 & 2 & | & 2 \end{bmatrix}$$
 (b) $\frac{-5}{1} = -5$

7. (a)
$$A^{-1} = \begin{bmatrix} B^{-1} & 0 \\ -D^{-1}CB^{-1} & D^{-1} \end{bmatrix}$$
 (b) $A^{-1} = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 & 0 \\ -15 & -24 & 1 & 2 & 0 \\ -5 & -8 & 0 & 1 & 0 \\ -5 & -8 & 0 & 0 & 1 \end{bmatrix}$

8. (a)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 6 & -4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 5 & 3 \\ 0 & 0 & k+18 \end{bmatrix}$$
 (b) $5k + 90$ (c) $k = -18$ (d) $L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 6 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix}$

(d)
$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 6 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix}$$

9. (a) 3 (b)
$$\begin{bmatrix} 19 & 20 \\ 0 & -3 \end{bmatrix} = 7 \begin{bmatrix} 2 & 5 \\ 0 & 1 \end{bmatrix} - 5 \begin{bmatrix} -1 & 3 \\ 0 & 2 \end{bmatrix}$$
 (c) No. This set has only a 2-dimensional

10.
$$\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\1 \end{bmatrix} \right\}$$
 (many solutions possible)

11. (a)
$$A = \begin{bmatrix} \frac{7}{2} & \frac{-3}{2} \\ \frac{3}{2} & \frac{-1}{2} \end{bmatrix}$$
 (b) $\begin{bmatrix} 32 \\ 76 \end{bmatrix}$

11. (a)
$$A = \begin{bmatrix} \frac{7}{2} & \frac{-3}{2} \\ \frac{3}{2} & \frac{-1}{2} \end{bmatrix}$$
 (b) $\begin{bmatrix} 32 \\ 76 \end{bmatrix}$

12. (a) $T \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$ and $T \begin{pmatrix} 3 \\ 6 \end{bmatrix} = \begin{bmatrix} -9 \\ 33 \end{bmatrix}$ (b) $T \begin{pmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -9 \\ 33 \end{bmatrix}$ is not equivalent to $3T \begin{pmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -9 \\ 9 \end{bmatrix}$ (c) $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$

(b)
$$T\left(3\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}-9\\33\end{bmatrix}$$
 is not equivalent

to
$$3T\left(\begin{bmatrix} 1\\2 \end{bmatrix}\right) = \begin{bmatrix} -9\\9 \end{bmatrix}$$
 (c) $\begin{bmatrix} 4\\2 \end{bmatrix}$

$$13.(a) \begin{bmatrix} 2\sqrt{3}/3 \\ -2\sqrt{3}/3 \\ -2\sqrt{3}/3 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix}$$
 (c)
$$\sqrt{6} \text{ units}$$
 (d)
$$(3, 4, 2)$$

(c)
$$\sqrt{6}$$
 units (d) $(3, 4, 2)$

(e) $2\sqrt{6}$ units²

14. (a) Yes.
$$det(A) = 0 \Rightarrow det(kA) = k^n det(A) = 0$$
 for any scalar k

14. (a) Yes.
$$\det(A) = 0 \Rightarrow \det(kA) = k^n \det(A) = 0$$
 for any scalar k (b) No. Many counter-examples possible: $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
15. CANNOT, MUST, MIGHT, MUST
16. (a) $(4, -1, 6)$ (b) $\cos \theta = \frac{7\sqrt{11}}{33}$ (c) $-5x + 4y + 3z = -6$ (d) $(\frac{6}{5}, 0, 0)$

16. (a)
$$(4, -1, 6)$$
 (b) $\cos \theta = \frac{7\sqrt{11}}{22}$

(c)
$$-5x + 4y + 3z = -6$$

(d)
$$(\frac{6}{5}, 0, 0)$$

17. $\frac{1}{2}$ units

18.
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$