1. (a) Yes since it satisfies $A \mathbf{x}=\mathbf{b}$.
(b) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{r}3 \\ -1 \\ 0 \\ 0\end{array}\right]+s\left[\begin{array}{r}1 \\ -1 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{r}-5 \\ 2 \\ 0 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=s\left[\begin{array}{r}1 \\ -1 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{r}-5 \\ 2 \\ 0 \\ 1\end{array}\right]$
(d) $\mathbf{a}_{4}=5 \mathbf{a}_{1}-2 \mathbf{a}_{2}+0 \mathbf{a}_{3}$
2. (a) $a \neq 0$ and $a \neq 3$
(b) $a=3$
(c) $a=0$
3. $p(x)=3+2 x+2 x^{2}$
4. $A^{-1}=\left[\begin{array}{rrr}1 & 1 & 10 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$
5. (a) $A^{T} A=\left[\begin{array}{rr}2 & 1 \\ 1 & 14\end{array}\right]$

$$
\left(A^{T} A\right)^{-1}=\frac{1}{27}\left[\begin{array}{rr}
14 & -1 \\
-1 & 2
\end{array}\right]
$$

(b) $A A^{T}=\left[\begin{array}{rrr}10 & 3 & 5 \\ 3 & 1 & 2 \\ 5 & 2 & 5\end{array}\right]$
$\operatorname{rank}\left(A A^{T}\right)=\operatorname{rank}\left(A^{T} A\right)=2$; or, show that $\operatorname{det}\left(A A^{T}\right)=0$.
6. $L U=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 4 & 1\end{array}\right]\left[\begin{array}{rr}-2 & -2 \\ 0 & 3 \\ 0 & 0\end{array}\right]$
7. (a) $\left[\begin{array}{ll}5 & 6 \\ 3 & 2\end{array}\right] \xrightarrow{-3 R 2+R 1}\left[\begin{array}{rr}-4 & 0 \\ 3 & 2\end{array}\right]$
(b) $E=\left[\begin{array}{rr}1 & -3 \\ 0 & 1\end{array}\right]$
(c) $A=E^{-1} L=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}-4 & 0 \\ 3 & 2\end{array}\right]$
8. (a) Any \mathbf{u} satisfying the following conditions work:
$u_{1}=4-u_{3}, u_{2}=2, u_{3}$ free
for example $\mathbf{u}=(3,2,1)$
(b) $\mathcal{B}_{1}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$
(c) $\mathcal{B}_{2}=\left\{\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]\right\}$
(d) T is neither onto nor one-to-one
9. (a) $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\left(90^{\circ}\right.$ counterclockwise rotation) or
$A=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]\left(90^{\circ}\right.$ clockwise rotation $)$
(b) $B=\left[\begin{array}{ll}1 & \frac{5}{2} \\ 0 & 1\end{array}\right]$
(c) $T(S(\mathbf{u}))=2 \mathbf{u}$ or for T corresponding to the clockwise rotation

$$
T(S(\mathbf{u}))=-2 \mathbf{u}
$$

10. $\left[\begin{array}{rr}-A^{-1} & -A^{-1} B A \\ I & 0\end{array}\right]$
11. (a) $\operatorname{det} A=-14$
(b) $\operatorname{det}\left(-2 A^{-1} A^{T} A\right)=-224$
12. (a) $|A||B||C||A|=|I|$ which implies $|A|^{2}|B||C|=1$
So $|A| \neq 0,|B| \neq 0,|C| \neq 0$
(b) $C^{-1}=A^{2} B$
13. (a) $\operatorname{rank} A=5$ and nullity $A=0$
(b) $\operatorname{rank} A=5$ and nullity $A=2$
(c) $\operatorname{rank} A=1$ and nullity $A=1$
14. (a) Yes, for any $A \in H$ and any $k \in \mathbb{R}$, $k A \in H$ since $k^{4}(a b c d)=0$
(b) No, for example $A_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right] \in H$ and $A_{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right] \in H$ yet $A_{1}+A_{2}=$ $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right] \notin H$
15. (a) $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]+t\left[\begin{array}{r}2 \\ -2 \\ 0\end{array}\right]$
(b) Area $=3$
(c) Volume $=13$
16. (a) $\mathcal{B}=\left\{-1+x,-2+x^{2}\right\}$
(b) $k=-6$
(c) $p^{\prime}(x)=6 \notin V$ yet $p^{\prime \prime}(x)=0 \in V$.
17. (a) $(-1,-4,-1)$
(b) $-x+2 y+3 z=3$
(c) $\cos \theta=\frac{13}{14 \sqrt{3}}$
18. (a) must
(b) cannot
(c) might
(d) must
