(7) 1. Given below is the the augmented matrix of the system $A \mathbf{x}=\mathbf{b}$.

$$
[A \mid \mathbf{b}]=\left[\begin{array}{rrrr|r}
1 & 2 & 1 & 1 & 1 \\
2 & 5 & 3 & 0 & 1 \\
-1 & -3 & -2 & 1 & 0 \\
0 & -1 & -1 & 2 & 1
\end{array}\right]
$$

(a) Determine whether $\mathbf{x}=\left[\begin{array}{r}4 \\ -2 \\ 1 \\ 0\end{array}\right]$ is a solution to the system.
(b) Find the general solution of this system in parametric-vector form.
(c) What is the general solution of the corresponding homogeneous system $A \mathbf{x}=\mathbf{0}$?
(d) Write the fourth column of A as a linear combination of the first three columns of A.
(5) 2. Let

$$
A=\left[\begin{array}{ccc}
1 & 1 & a \\
1 & a & a \\
a & a & a \\
a & a & a^{2}
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
a^{2}-2 a
\end{array}\right]
$$

(a) For what value(s) of a does the system $A \mathbf{x}=\mathbf{b}$ have no solution?
(b) For what value(s) of a does the system $A \mathbf{x}=\mathbf{b}$ have a unique solution?
(c) For what value(s) of a does the system $A \mathbf{x}=\mathbf{b}$ have infinitely many solutions ?
(5) 3. Use matrices to find the quadratic polynomial whose graph goes through the points $(-1,3)$, $(0,3)$ and $(1,7)$.
(3) 4. Find the inverse of $A=\left[\begin{array}{rrr}1 & -1 & -8 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right]$.
(6) 5. Let $A=\left[\begin{array}{cc}1 & 3 \\ 0 & 1 \\ -1 & 2\end{array}\right]$.
(a) Evaluate $A^{T} A$ and find $\left(A^{T} A\right)^{-1}$.
(b) Evaluate $A A^{T}$ and show that $A A^{T}$ is not invertible.
(3) 6. Find an $L U$-factorization for the matrix $\left[\begin{array}{rr}-2 & -2 \\ -4 & -1 \\ -10 & 2\end{array}\right]$.
(5) 7. Let $A=\left[\begin{array}{ll}5 & 6 \\ 3 & 2\end{array}\right]$.
(a) Apply an elementary row operation to A such that the resulting matrix is a lower triangular matrix.
(b) Find the elementary matrix that corresponds to the row operation from part (a).
(c) Use the above to find an upper triangular matrix U and a lower triangular matrix L such that $A=U L$. (Note this is not the same as $L U$-factorization of A.)
(6) 8. Let $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right]$ and let $T(\mathbf{x})=A \mathbf{x}$.
(a) Find a vector \mathbf{u} such that $T(\mathbf{u})=\left[\begin{array}{l}4 \\ 4 \\ 2 \\ 2\end{array}\right]$.
(b) Find a basis for the range of T.
(c) Find a basis for the kernel of T.
(d) Is T onto? Is T one-to-one?
(6) 9. Let $\mathbf{u}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.
(a) Find a 2×2 matrix A such that $T(\mathbf{x})=A \mathbf{x}$ is a rotation and $T(\mathbf{u})$ is orthogonal to \mathbf{u}.
(b) Find a 2×2 matrix B such that $S(\mathbf{x})=B \mathbf{x}$ is a horizontal shear and $S(\mathbf{u})$ is orthogonal to \mathbf{u}.
(c) Draw \mathbf{u} and $T(S(\mathbf{u})$).
(4) 10. Expand and simplify

$$
\left[\begin{array}{cc}
-A^{-1} & B A^{-1} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A B & B \\
A & 0
\end{array}\right]\left[\begin{array}{cc}
A^{-1} & 0 \\
B^{-1} & A
\end{array}\right]
$$

(5) 11. Let $A=\left[\begin{array}{llll}0 & 1 & 2 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 2 & 4 & 0\end{array}\right]$
(a) Find $\operatorname{det} A$.
(b) What is $\operatorname{det}\left(-2 A^{-1} A^{T} A\right)$?
(4) 12. Suppose A, B and C are $n \times n$ matrices such that $A B C A=I$.
(a) Use determinants to explain why A, B and C are invertible.
(b) Find C^{-1} in terms of A and B (in simplest form).
(6) 13. Find the rank and nullity (dimension of null space) of each matrix A described below.
(a) A is a 5×5 elementary matrix.
(b) A is a matrix such that $T(\mathbf{x})=A \mathbf{x}$ is an onto transformation from \mathbb{R}^{7} to \mathbb{R}^{5}.
(c) A is a non-zero 2×2 matrix such that A^{2} is the zero matrix.
(5) 14. Consider the set $H=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a b c d=0\right\}$.
(a) Is H closed under scalar multiplication? Justify your answer.
(b) Is H closed under addition? Justify your answer.
(6) 15. Let $V=\left\{p(x) \in \mathbb{P}_{2}: p(0)=-p^{\prime}(1)\right\}$.
(a) Find a basis for V.
(b) For what value of k is $p(x)=6 x+k$ in V ?
(c) For the polynomial $p(x)$ in part (b), is $p^{\prime}(x)$ in V ? Is $p^{\prime \prime}(x)$ in V ?
(8) 16. Consider the lines $\mathcal{L}_{1}:\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}0 \\ -6 \\ -4\end{array}\right]+s\left[\begin{array}{r}-1 \\ 2 \\ 3\end{array}\right]$ and $\mathcal{L}_{2}:\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}7 \\ -2 \\ 9\end{array}\right]+t\left[\begin{array}{l}4 \\ 1 \\ 5\end{array}\right]$
(a) Find the coordinates of the point of intersection of \mathcal{L}_{1} and \mathcal{L}_{2}.
(b) Let \mathcal{P} be the plane that contains the point $Q(2,1,1)$ and is orthogonal to the line \mathcal{L}_{1}. Give the equation (in $a x+b y+c z=d$ form) of this plane.
(c) Find the cosine of the angle between \mathcal{L}_{1} and \mathcal{L}_{2}.
(7) 17. Consider the prism in \mathbb{R}^{3} (Note that a prism can be seen as half a parallelepiped.) whose triangular base has vertices at the points $A(0,1,3), B(2,-1,3)$, and $C(1,1,5)$. Furthermore assume that another vertex of this prism is at $D(4,7,10)$. (See the image below).
(a) Find a parametric vector equation for the line through A and B.
(b) Find the area of triangle $\triangle A B C$.
(c) Find the volume of the prism. (Note that $\overrightarrow{A D}$ is not necessarily orthogonal to $\triangle A B C$.)

(3) 18. Let \mathbf{u}, \mathbf{v} and \mathbf{w} be unit vectors in \mathbb{R}^{n}. Furthermore, let \mathbf{u}, \mathbf{v} and \mathbf{w} be orthogonal to each other. Simplify the following.

$$
\operatorname{Proj}_{\mathbf{u}+\mathbf{w}}(\mathbf{u}-2 \mathbf{v})
$$

(2) 19. Suppose A is an $m \times n$ matrix and that there is a matrix C such that $A C=I$. Show that $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b} in \mathbb{R}^{m}. What can you conclude about the rank of A ?
(4) 20. Fill in the blanks. The missing word is might, must or cannot.
(a) If $A^{2}+3 A=2 I$, then A \qquad be invertible.
(b) If $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\mathbf{0}$ for three given points A, B, and C in \mathbb{R}^{n}, then $\operatorname{Span}\{\overrightarrow{A B}, \overrightarrow{B C}, \overrightarrow{C A}\}$
\qquad be three-dimensional.
(c) Two lines in \mathbb{R}^{3} that are orthogonal to a third line \qquad be parallel.
(d) If $\mathbf{a}, \mathbf{2 a}+\mathbf{3 b}, \mathbf{a}-\mathbf{3 c}$ are linearly independent vectors in a vector space V, then $\mathbf{a}, \mathbf{b}, \mathbf{c}$
\qquad be linearly independent.

