(7) 1. Given below is the the augmented matrix of the system  $A\mathbf{x} = \mathbf{b}$ .

$$[A|\mathbf{b}] = \begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 2 & 5 & 3 & 0 & 1 \\ -1 & -3 & -2 & 1 & 0 \\ 0 & -1 & -1 & 2 & 1 \end{bmatrix}$$

- (a) Determine whether  $\mathbf{x} = \begin{bmatrix} 4 \\ -2 \\ 1 \\ 0 \end{bmatrix}$  is a solution to the system.
- (b) Find the general solution of this system in parametric-vector form.
- (c) What is the general solution of the corresponding homogeneous system  $A\mathbf{x} = \mathbf{0}$ ?
- (d) Write the fourth column of A as a linear combination of the first three columns of A.
- (5) 2. Let

$$A = \begin{bmatrix} 1 & 1 & a \\ 1 & a & a \\ a & a & a \\ a & a & a^2 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ a^2 - 2a \end{bmatrix}$$

- (a) For what value(s) of a does the system  $A\mathbf{x} = \mathbf{b}$  have no solution?
- (b) For what value(s) of a does the system  $A\mathbf{x} = \mathbf{b}$  have a unique solution?
- (c) For what value(s) of a does the system  $A\mathbf{x} = \mathbf{b}$  have infinitely many solutions?
- (5) 3. Use matrices to find the quadratic polynomial whose graph goes through the points (-1,3), (0,3) and (1,7).
- (3) 4. Find the inverse of  $A = \begin{bmatrix} 1 & -1 & -8 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$ .
- (6) 5. Let  $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ -1 & 2 \end{bmatrix}$ .
  - (a) Evaluate  $A^T A$  and find  $(A^T A)^{-1}$ .
  - (b) Evaluate  $AA^T$  and show that  $AA^T$  is not invertible.
- (3) 6. Find an LU-factorization for the matrix  $\begin{bmatrix} -2 & -2 \\ -4 & -1 \\ -10 & 2 \end{bmatrix}$ .
- (5) 7. Let  $A = \begin{bmatrix} 5 & 6 \\ 3 & 2 \end{bmatrix}$ .
  - (a) Apply an elementary row operation to A such that the resulting matrix is a **lower triangular** matrix.
  - (b) Find the elementary matrix that corresponds to the row operation from part (a).
  - (c) Use the above to find an upper triangular matrix U and a lower triangular matrix L such that A = UL. (Note this is not the same as LU-factorization of A.)

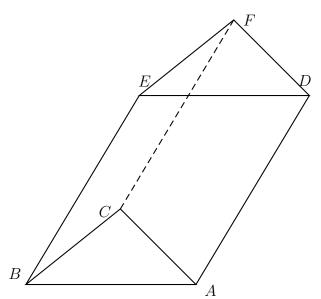
(6) 8. Let 
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 and let  $T(\mathbf{x}) = A\mathbf{x}$ .

- (a) Find a vector  $\mathbf{u}$  such that  $T(\mathbf{u}) = \begin{bmatrix} 4 \\ 4 \\ 2 \\ 2 \end{bmatrix}$ .
- (b) Find a basis for the range of T.
- (c) Find a basis for the kernel of T.
- (d) Is T onto? Is T one-to-one?
- (6) 9. Let  $\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ .
  - (a) Find a  $2 \times 2$  matrix A such that  $T(\mathbf{x}) = A\mathbf{x}$  is a rotation and  $T(\mathbf{u})$  is orthogonal to  $\mathbf{u}$ .
  - (b) Find a  $2 \times 2$  matrix B such that  $S(\mathbf{x}) = B\mathbf{x}$  is a horizontal shear and  $S(\mathbf{u})$  is orthogonal to  $\mathbf{u}$ .
  - (c) Draw  $\mathbf{u}$  and  $T(S(\mathbf{u}))$ .
- (4) 10. Expand and simplify

$$\begin{bmatrix} -A^{-1} & BA^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} AB & B \\ A & 0 \end{bmatrix} \begin{bmatrix} A^{-1} & 0 \\ B^{-1} & A \end{bmatrix}$$

- (5) 11. Let  $A = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 2 & 4 & 0 \end{bmatrix}$ 
  - (a) Find  $\det A$ .
  - (b) What is  $\det(-2A^{-1}A^TA)$ ?
- (4) 12. Suppose A, B and C are  $n \times n$  matrices such that ABCA = I.
  - (a) Use determinants to explain why  $A,\,B$  and C are invertible.
  - (b) Find  $C^{-1}$  in terms of A and B (in simplest form).
- (6) 13. Find the  $\mathbf{rank}$  and  $\mathbf{nullity}$  (dimension of null space) of each matrix A described below.
  - (a) A is a  $5 \times 5$  elementary matrix.
  - (b) A is a matrix such that  $T(\mathbf{x}) = A\mathbf{x}$  is an onto transformation from  $\mathbb{R}^7$  to  $\mathbb{R}^5$ .
  - (c) A is a **non-zero**  $2 \times 2$  matrix such that  $A^2$  is the **zero** matrix.
- (5) 14. Consider the set  $H = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : abcd = 0 \right\}$ .
  - (a) Is H closed under scalar multiplication? Justify your answer.
  - (b) Is H closed under addition? Justify your answer.
- (6) 15. Let  $V = \{p(x) \in \mathbb{P}_2 : p(0) = -p'(1)\}.$ 
  - (a) Find a basis for V.

- (b) For what value of k is p(x) = 6x + k in V?
- (c) For the polynomial p(x) in part (b), is p'(x) in V? Is p''(x) in V?
- (8) 16. Consider the lines  $\mathcal{L}_1: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ -6 \\ -4 \end{bmatrix} + s \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$  and  $\mathcal{L}_2: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ -2 \\ 9 \end{bmatrix} + t \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$ 
  - (a) Find the coordinates of the point of intersection of  $\mathcal{L}_1$  and  $\mathcal{L}_2$ .
  - (b) Let  $\mathcal{P}$  be the plane that contains the point Q(2,1,1) and is orthogonal to the line  $\mathcal{L}_1$ . Give the equation (in ax + by + cz = d form) of this plane.
  - (c) Find the cosine of the angle between  $\mathcal{L}_1$  and  $\mathcal{L}_2$ .
- (7) 17. Consider the prism in  $\mathbb{R}^3$  (Note that a prism can be seen as half a parallelepiped.) whose triangular base has vertices at the points A(0,1,3), B(2,-1,3), and C(1,1,5). Furthermore assume that another vertex of this prism is at D(4,7,10). (See the image below).
  - (a) Find a parametric vector equation for the line through A and B.
  - (b) Find the area of triangle  $\triangle ABC$ .
  - (c) Find the volume of the prism. (Note that  $\overrightarrow{AD}$  is not necessarily orthogonal to  $\triangle ABC$ .)



(3) 18. Let  $\mathbf{u}$ ,  $\mathbf{v}$  and  $\mathbf{w}$  be unit vectors in  $\mathbb{R}^n$ . Furthermore, let  $\mathbf{u}$ ,  $\mathbf{v}$  and  $\mathbf{w}$  be orthogonal to each other. Simplify the following.

$$\operatorname{Proj}_{\mathbf{u}+\mathbf{w}}(\mathbf{u}-2\mathbf{v})$$

- (2) 19. Suppose A is an  $m \times n$  matrix and that there is a matrix C such that AC = I. Show that  $A\mathbf{x} = \mathbf{b}$  is consistent for all  $\mathbf{b}$  in  $\mathbb{R}^m$ . What can you conclude about the rank of A?
- (4) 20. Fill in the blanks. The missing word is **might**, **must** or **cannot**.
  - (a) If  $A^2 + 3A = 2I$ , then A \_\_\_\_\_ be invertible.
  - (b) If  $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \mathbf{0}$  for three given points A, B, and C in  $\mathbb{R}^n$ , then  $\operatorname{Span}\{\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CA}\}$  be three-dimensional.
  - (c) Two lines in  $\mathbb{R}^3$  that are orthogonal to a third line \_\_\_\_\_ be parallel.
  - (d) If  $\mathbf{a}, 2\mathbf{a} + 3\mathbf{b}, \mathbf{a} 3\mathbf{c}$  are linearly independent vectors in a vector space V, then  $\mathbf{a}, \mathbf{b}, \mathbf{c}$  be linearly independent.